EMERGENCE OF ZIKA VIRUS: AN INTERPLAY OF VIRUS, VECTOR AND VERTEBRATE HOSTS

  • Sajal Bhattacharya Department of Zoology, Asutosh College (University of Calcutta),India
  • Shakya Sinha Department of Zoology, Dinabandhu Andrews College (University of Calcutta), India
  • Debasmita Baidya Department of Zoology, Asutosh College (University of Calcutta),India
  • Sandeep Poddar Senior Research Director, Lincoln University College, Malaysia https://orcid.org/0000-0001-9771-877X
  • Indranil Sikder Department of Zoology, Asutosh College (University of Calcutta),India

Abstract

Zika virus (ZIKV) is a mosquito-borne zoonotic flavivirus. The epidemiology of this emergent hitherto neglected disease has become a poignant interest in the context of the recent outbreaks in South America. The severe impact that leds World Health Organization (WHO) to declare a Public Health Emergency (PHE) of International concern. Two recognized and potential vectors of this virus, Aedes aegypti and Aedes albopictus, have been prevalent in most of the habitable continents in the world including the Indian sub-continent. In accordance to the earlier apprehension, several cases of ZIKV were reported in 2017 and 2018 from the states of Gujarat and Rajasthan in Western India. Studies indicated that the emerging arboviral infections generally stemmed from an animal reservoir, but there is inadequate information on the natural history of several arboviruses, like ZIKV, specially their methods of survival during the inter-epidemic period. Hence, a sustained vector-virus and vertebrate-host surveillance is an imperative necessity in Zika endemic and non-endemic regions to formulate strategies for the prevention offuture outbreak, if any. This review is an attempt to provide an understanding of the interplay of Zika virus and its vector/s and vertebrate host/s in reference to today’s changing environment.

Keywords: Zika Virus, Vectors, Reservoir Hosts, Global Warming, Deforestation, Travels and Trades

Downloads

Download data is not yet available.

References

Adelman, Z.N., Anderson, M.A., Wiley, M.R., Murreddu, M.G., Samuel, G.H., Morazzani, E.M. & Myles, K.M. (2013). Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector Mosquitoes to viral infection. PLoS Neglected Tropical Diseases, 7(5).

Alera, M.T., Hermann, L., Tac-An, I.A., Klungthong, C., Rutvisuttinunt, W., Manasatienkij, W., Villa, D., Thaisom boonsuk, B., Velasco,J.M., Chinnawirotpisan, P. & Lago, C.B. (2015). Zika virus infection, Philippines. Emerging infectious diseases, 21(4), pp 722-724.

Althouse, B.M., Hanley, K.A., Diallo, M., Sall, A.A., Ba, Y., Faye, O., Diallo D, Watts D.M., Weaver S.C. & Cummings D.A. (2015). Impact of climate and mosquito vector abundance on sylvatic arbovirus circulation dyhnamics in Senegal. The American Journal of Tropical Medicine, 92(1), pp 88-97.

Berthet, N., Nakouné, E., Kamgang, B., Selekon, B., Descorps-Declère, S., Gessain, A., Manuguerra, J. C. & Kazanji, M. (2014). Molecular characterization of three Zikaflaviviruses obtained from sylvatic mosquitoes in the Central African Republic. Vector-Borne and Zoonotic Diseases,14(12), pp 862-865.

Bhattacharya S., Chakraborty, S.K., Chakraborty S., Ghosh, K.K., Palit, A., Mukherjee, K.K., Chakraborty, M.S., Tandon, N. & Hati, A.K. (1986). Density of Culexvishnui and appearance JE antibody in sentinel chicks and wild birds in relation to JE cases, Tropical and Geographical Medicine, 38(1), pp 46-50.

Bhattacharya, S. & Basu, P. (2014). Japanese Encephalitis Virus (JEV) infection in different vertebrates and its epidemiological significance: a Review. International Journal of Fauna and Biological Studies, 1(6), pp 32-37.

Bhattacharya, S. & Basu, P. (2016). A new dimension in the dengue epidemiology with special reference to the genetic diversity of the virus: A review. International Journal of Fauna and Biological Studies, 3(3), pp 29-41.

Bhattacharya, S. & Basu, P. (2016). The Southern House Mosquito, Culex quinquefasciatus: profile of a smart vector. Journal of Entomology and Zoology Studies, 4(2), pp 73-81.

Bhattacharya, S. (2009). Mosquito borne diseases in India with special reference to malaria vectors and their control. Journal of the Asiatic Society, 39(4) pp 97-140.

Boukraa, S., Dekoninck, W., Versteirt, V., Schaffner, F., Coosemans, M., Haubruge, E. & Francis, F. (2015). Updated checklist of the mosquitoes (Diptera: Culicidae) of Belgium. Journal of Vector Ecology, 40(2), pp 398-407.

Bres, P. (1970). Recent data from serological surveys on the prevalence of arbovirus infections in Africa, with special reference to yellow fever. Bulletin of the World Health Organization, 43(2), pp 223-267.

Calvez, E., Guillaumot, L., Millet, L., Marie, J., Bossin, H., Rama, V. Faamoe, A., Kilama, S., Teurlai, M., Mathieu- Daudé, F. & Dupont-Rouzeyrol, M. (2016). Genetic diversity and phylogeny of Aedes aegypti, the main arbovirus vector in the Pacific. PLOS Neglected Tropical Diseases,10(1): e0004374

Chippaux, A., Chippaux-Hyppolyte, C., Monteny- Vandervorst, N. & Souloumiac-Deprez D. (1981). Diagnostic de plusieurscas de fièvre jaune en zone d’émergenceendémiqueen Côte-d'Ivoire. Medecine Tropicale, 41(1), pp 53- 61.

Ciota, A.T., Bialosuknia, S.M., Ehrbar, D.J. & Kramer, L.D. (2017). Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes. Emerging Infectious Disease, 23(5), pp 880-882.

Darwish M.A., Hoogstral H., Roberts T.J., Ahmed I.P. & Omar F. (1983). A serological surcvey for certain arbovir uses (Togaviridae) in Pakistan . Transactions of the Royal Society of Tropical Medicine and Hygiene, 77(4), pp 442-445.

Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. (2009). Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology, 46(1), pp 33–41.

Diallo, D., Sall A.A., Diagne, C.T., Faye, O., Ba, Y., Hanley K.A., Buenemann M., Weaver S.C. & Diallo M., (2014). Zika virus emergence in mosquitoes in southeastern Senegal. PLoS One, 9(10).

Diallo, M., Thonnon, J., Traore-Lamizana, M. & Fontenille, D. (1999). Vectors of Chikungunya virus in Senegal: current data and transmission cycles. The American Journal of Tropical Medicine and Hygiene, 60(2), pp 281– 286.

Dick, G.W., Kitchen, S.F. & Haddow, A.J.(1952). Zika virus. I. Isolations and serological specificity.Transactions of the Royal Society of Tropical Medicine and Hygiene, 46(5), pp 509–520.

Dick, G.W. (1952). Zika virus. II. Pathogenicity and physical properties. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46(5), pp 521–534.

Duffy, M.R., Chen, T.H., Hancock, W.T., Powers, A.M., Kool, J.L., Lanciotti, R.S., Pretrick M., Marfel M., Holzbauer S., Dubray C., Guillaumot L., Griggs A., Bel M., Lambert A.J., Laven J., Kosoy O., Panella A., Biggerstaff, B.J., Fischer M. & Hayes E.B. (2009). Zika virus outbreak on Yap Island, Federated States of Micronesia. New England Journal of Medicine, 360, pp 2536-2543.

Erguler, K., Smith-Unna, S.E., Waldock, J., Proestos, Y., Christophides, G.K., Lelieveld, J. & Parham, P.E. (2016). Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLoS One,11(2): e0149282.

Faye, O., Freire, C.M.C., Iamarino, A., Faye, O., Oliveira, V.C. de. J., Diallo, M., Zanotto, P.M.A. & Sall, A.A. (2014). Molecular Evolution of Zika Virus during Its Emergence in the 20th Century. PLOS Neglected Tropical Disease, 8(1).

Fagbami, A. (1978). Human arthropod-borne virus infections in Nigeria: serological and virological investigations at Shaki, Oyo State. Journal of hygiene, epidemiology, microbiology, and immunology, 22(2), pp 184–189.

Gong, Z., Gao, Y. & Han, G.Z. (2016). Zika Virus: Two or Three Lineages? Trends in Microbiology, 24(7), pp 521- 522.

Georges, A.J., Saluzzo, J.F. & Gonzalez J.P. (1980). ArbovirosesenCentrafrique: incidence et aspects diagnostiques chez l'homme. Tropical Journal of Medical Research, 40, pp 561–568.

Grard, G., Caron, M., Mombo, I.M., Nkoghe, D., Mboui Ondo, S., Jiolle D., Fontenille, D., Paupy, C. & Leroy, E.C., (2014). Zika virus in Gabon (Central Africa) 2007: a new threat from Aedes albopictus? PLOS Neglected Tropical Disease. 8(2):e2681.

Haddow, A.J., Williams, M.C., Woodall, J.P., Simpson, D.I.H. & Goma, L.K.H. (1964). Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest. Bulletin of the World Health Organization, 31(1), pp 57.

Haddow, A.D., Schuh, A.J., Yasuda, C.Y., Kasper, M.R., Heang, V., Huy R., Guzman, H. Tesh, R.B. & Weaver

S.C. (2012). Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLOS Neglected Tropical Diseases, 6(2): e1477

Heang, V., Yasuda, C.Y., Sovann, L., Haddow, A.D., Travassos da Rosa, A.P., Tesh, R.B. & Kasper, M.R. (2012). Zika virus infection, Cambodia, 2010. Emerging Infecious Diseases, 18(2), pp 349-51.

Imperato, P.J. (2016). The Convergence of a Virus, Mosquitoes, and Human Travel in Globalizing the Zika Epidemic, Journal of Community Health, 41(3), pp 674-9.

Ioos, S., Mallet, H.P., Leparc Goffart, I., Gauthier, V., Cardoso, T. & Herida, M. (2014). Current Zika virus epidemiology and recent epidemics. Medecineet Maladies Infectieuses Journal, 44(7), pp 302-307.

Kampango, A. & Abilio, A.P.(2016). The Asian tiger hunts in Maputo city---the first confirmed report of Aedes (Stegomyia) albopictus in Mozambique. Parasite Vectors, 9, pp 76.

Kilpatrick, A.M., Meola, M.A., Moudy, R.M. & Kramer, L.D. (2008). Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLOS Neglected Tropical Diseases, 4(6).

Kuno, G. & Chang, G.J. (2005). Biological transmission of arboviruses: re-examination of and new insights into components, mechanisms and unique traits as well as their evolutionary trends. Clinical Microbiology Reviews, 18(4), pp 608-637.

Kuno, G. & Chang, G.J.J. (2007). Full length sequencing and genomic characterization of Bagaza, Kedougou, and ZiVes. Archives of Virology, 152(4), pp 687–96.

Lanciotti, R.S., Kosay, O.L., Laven, J.L., Velez, J.O., Lambert, A.J., Johnson A.J., Stanfield S.M. & Duffy. M.R. (2008). Genetic and serologic properties of Zika Virus associated with an epidemic, Yap state, Micronesia, 2007. Emerging Infectious Diseases, 14(8), pp 1232-1239.

Ledermann, J.P., Guillaumot, L., Yug, L., Saweyog, S.C., Tided, M., Machieng, P., Pretrick, M., Marfel, M., Griggs, A., Bel, M. & Duffy, M.R. (2014). Aedes hensilli as a potential vector of Chikungunya and Zika viruses. PLOS Neglected Tropical Diseases, 8(10).

Le Gonidec, G. & Dhiver, F. (1973). Le virus de la fièvre jaune et autres arbovirus dans le Sénégal oriental: étude des serums humains. Bulletin de la Société de Pathologie Exotique, 66, pp 603–15.

Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklov, J. (2014). Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. POLS One, 9(3): e89783.

Liu, Z.Y., Shi, W.F. & Qin, C.F. (2019). The evolution of Zika virus from Asia to the Americas. Nature Reviews Microbiology, 17(3), pp 131-139.

Marchette, N.J., Garcia, R. & Rudnick, A. (1969). Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia.

American Journal of Tropical Medicine and Hygiene, 18(3), pp 411-415.

Marcondes, C.B. & Ximenes, M.F. (2015). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revistada Sociedade Brasileirade Medicina Tropical, 49(1), pp 4-10.

Mlakar, J., Korva, M., Tul, N., Popovic, M., Polisak-Prijateli, M., Mraz, J., Kolenc, M., Resman Rus, K., Vesnaver Vipotnik, T., Fabjan Vodušek, V., Vizjak, A., Pižem, J., Petrovec,

M. & Avšič Županc, T (2016). Zika virus associated with microbiology. The New England Journal of Medicine, 374(10), pp 951-958.

Mordecai, E.A., Paaijmans K.P., Johnson L.R., Balzer C., Ben-Horin T., de Moor E., McNally A., Pawar S., Ryan S.J., Smith T.C. & Lafferty K.D. (2013). Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters, 16, pp 22–30.

ordecai, E, Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., Miazgowicz, K., Murdock, C.C., Rohr, J.R., Ryan, S.J., Savage, V., Shocket, M.S., Stewart Ibarra, A., Thomas, M.B. & Weikel, D.P., (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLOS Neglected Tropical Diseases, 11(4).

Murdock, C.C., Paaijmans, K.P., Bell, A.S., King, J.G., Hillyer, J.F., Read, A.F. & Thomas, M.B. (2012). Complex effects of temperature on mosquito immune function. Proceedings of the Royal Society B: Biological Sciences, 279(1741), pp 3357–3366.

Mourya, D.T., Shil, P., Sapkal, G N. & Yadav, P.D. (2016). Zika virus: Indian perspectives. Indian Journal of Medical Research, 143(5), pp 553–564.

Ngoagouni, C., Kamgang, B., Nakoune, E., Paupy, C. & Kazanji, M., (2015). Invasion of Aedesalbopictus (Diptera: Culicidae) into Central Africa: what consequences for emerging diseases? Parasite Vectors, 8(191).

Olson, J.G., Ksiazek, T.G., Gubler, D.J., Lubis, S.I., Simanjuntak, G., Lee, V.H., Nalim S. & Juslis K., See R. (1983). A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. Annals of Tropical Medicine and Parasitology, 77(2), pp 131-137.

Olson, J.G. & Ksiazek, T.G. (1981). Zika virus, a cause of fever in Central Java, Indonesia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 75(3), pp 389-393.

Paixao, E.S., Teixeira, M.G. & Rodrigues, L.C. (2018). Zika, Chikungunya and dengue: teh causes and threats of new and reemergingarboviral diseases, BMJ Glob Health, 3(1).

Petersen, E., Wilson, M.E., Touch, S., McCloskey, B., Mwaba, P., Bates, M., Dar, O., Mattes, F., Kidd, M., Ippolito, G., Azhar, E.I. & Zumla, A. (2016). Rapid spread of Zika virus in the Americas-Implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. International Journal of Infectious Diseases, 44, pp11-15.

Petersen, E.E., Meaney-Delman, D., Neblett-Fanfair, R., Havers, F., Oduyebo, T., Hills, SL., Rabe I.B., Lambert, A., Abercrombie, J., Martin, S.W., Gould, C.V., Oussayef, N., Polen, K.N., Kuehnert, M.J., Pillai, S.K., Petersen, L.R., Honein, M.A., Jamieson, D.J. & Brooks, J.T. (2016). Update: Interim Guidance for Preconception Counseling and Prevention of Sexual Transmission of Zika Virus for Persons with Possible Zika Virus Exposure - United States, September 2016. Morbidity and Mortality Weekly Report, 65(39), pp 1077-1081.

Porse, C.C., Messenger, S., Vugia, D.J., Jilek, W., Salas, M., Watt, J. & Kramer, V. (2018). Travel-Associated Zika Cases and Threat of Local Transmission during Global Outbreak, California, USA. Emerging Infectious Diseases, 24(9), pp 1626–1632.

Robin, Y. & Mouchet, J. (1975) Enquêtesérologique et entomologique sur la fièvre jaune en Sierra Leone. Bulletin de la Société de pathologie exotique, 68, pp 249–58.

Rochlin, I., Ninivaggi, D.V., Hutchinson, M.L. & Farajollahi, A., (2013). Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in North eastern USA: implications for public health practitioners. PloS one, 8(4).

Roth, A., Mercier, A., Lepers, C., Hoy, D., Duituturaga, S., Benyon, E., Guillaumot, L. & Souares, Y. (2014). Concurrent outbreaks of dengue, chikungunya and Zika virus infections—an unprecedented epidemic wave of mosquito-borne viruses in the Pacific. Eurosurveillance, 19(41).

Saluzzo, J.F., Iyanoff, B., Languillat, G. & Georges A.J. (1982). Serological survey for arbovirus antibodies in the human and simian populations of the South-East of Gabon (author’s transI). Bulletin de laSociété de pathologie exotique, 75(3), 262-266.

Shen, S., Shi, J., Wang, J., Tang, S., Wang, H., Hu, Z. & Deng, F. (2016). Phylogenetic analysis revealed the central roles of two African countries in the evolution and worldwide spread of Zika virus, Virologica Sinica, 31(2), pp 118-130.

Simonin, Y., van Riel, D., Van de Perre, P., Rockx, B. & Salinas, S. (2017) Differential virulence between Asian and African lineages of Zika virus. PLOS Neglected Tropical Diseases, 11(9).

Simon-Loriere, E. & Holmes, E.C. (2011) Why do RNA viruses recombine? Nature Reviews Microbiology, 9(8), pp 617–626.

Siraj, AS., Santos-Vega, M., Bouma, MJ., Yadeta, D., Carrascal, D.R. & Pascual, M. (2014). Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science, 343(6175), pp 1154–1158.

Sirohi, D., Chez, Z., Sun, L., Klose, T., Pierson, T.C., Rossmann, M.G. & Kuhn, R.J. (2016). The 3.8 Å resolution cryo-EM structure of Zika virus. Science, 352 (6284), pp 467-70.

Taucher, C., Berger, A. & Mandl, C.W. (2010). A trans-Complementing Recombination Trap Demonstrates a Low Propensity of Flaviviruses for Intermolecular Recombination. Journal of Virology, 84(1), pp 599–611.

Tesh, B.D., Foy, D. B., Kobylinski, C.K., Foy, L., Chilson, J., Blitvich, J.B., Travassos da Rosa, A., Haddow, D.A. & Lanciotti, S.R. (2011). Probable Non-Vector borne ransmission of Zika Virus, Colorado, USA. Emerging Infectious Diseases,17(5), pp 880-882.

Vorou, R. (2016). Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently. International Journal of Infectious Diseases, 48, pp 85-90.

Wang, L., Valderramos, S.G., Wu, A., Ouyang, S., Li, C. & Brasil, P. (2016). From Mosquitos to humans: genetic evolution of Zika virus. Cell Host & Microbe, 19(5), pp 561-5.

Weinbren, M.P. & Williams, M.C. (1958). Zika virus: further isolations in the Zika area, and some studies on the strains isolated. Transactions of the Royal Society of Tropical edicine and Hygiene, 52, pp 263-268.

WHO (2017), Retrieve from: www.who.int/csr/don/26-may-2017-zika-ind/en/cited on 24.5.2017.

Wolfe, N.D., Kilbourn, A.M., Karesh, W.B., Rahman, H.A., Bosi, E.J., Cropp, B.C., Andau M., Spielman A. & Gubler

D.J. (2001). Sylvatic transmission of arboviruses among Borneanorang-utans. The American Journal of Tropical Medicine and Hygiene, 64(5-6), pp 310-316.

Wong, P.S., Li, M.Z., Chong, C.S., Ng, L.C. & Tan, C.H., (2013). Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLOS Neglected Tropical Diseases, 7(8). e2348

Published
2019-10-01
How to Cite
Sajal Bhattacharya, Shakya Sinha, Baidya, D., Poddar, S., & Indranil Sikder. (2019). EMERGENCE OF ZIKA VIRUS: AN INTERPLAY OF VIRUS, VECTOR AND VERTEBRATE HOSTS. Malaysian Journal of Medical Research, 3(4), 13-25. https://doi.org/10.31674/mjmr.2019.v03i04.003