Waist Stature Ratio: A Measure of Adiposity and Body Fat Composition in Asian Indian

Authors

  • Arup Ratan Bandyopadhyay Department of Anthropology, University of Calcutta, 35, Ballygunge Circular Road 700019, Kolkata
  • Kusum Ghosh Department of Anthropology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata – 700019, India
  • Diptendu Chatterjee Department of Anthropology, University of Calcutta, 35, Ballygunge Circular Road 700019, Kolkata

DOI:

https://doi.org/10.31674/mjmr.2024.v08i01.002

Abstract

Background: The imbalance between the energy ingested in food and expended can lead to obesity. It is regarded as one of the most prominent but ignored public health issues of today and threatens to inundate the health care resources through increasing clinical consequences and additionally as a financial burden. Hence, the identity of individuals with health dangers using easy, surrogate measures to estimate excess adiposity becoming very important. In this regard, the purpose of this study is to evaluate the incidence of obesity, considering commonly used obesity measures, and also to discern the best obesity predictor among the adult Bengalee females of West Bengal, India. Research Method: Participants included 210 healthy adult Bengalee women (mean age 43.06 ± 3.4 years). Following standard procedure, anthropometric measures were taken for height, weight, hip circumference, and waist circumference. Waist-to-hip and waist-to-stature ratios were then computed. A fat monitor was used to calculate body fat percentage. Results: Out of all the adiposity measures, Waist Circumference (r = 0.78, P<0.001), Hip Circumference (r = 0.74, P<0.001), and Waist Hip Ratio (r = 0.72, P<0.001), the results showed that Waist Stature Ratio had the largest positive connection (r = 0.88, P<0.001) with Percent Body fat. Conclusion: Therefore, the current study indicated that among Asian Indian middle-aged women, WSR may be the most appropriate marker for PBF.

Keywords:

Public Health, Obesity, Anthropometry, Waist Stature Ratio (WSR), Chronic Diseases

Downloads

Download data is not yet available.

References

Ashwell, M., Cole, T. J., & Dixon, A. K. (1996). Ratio of waist circumference to height is strong predictor of intra-abdominal fat. BMJ, 313(7056), 559-560. https://doi.org/10.1136/bmj.313.7056.559d

Ashwell, M., & Gibson, S. (2016). Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’based on BMI and waist circumference. BMJ Open, 6(3), e010159. https://doi.org/10.1136/bmjopen-2015-010159

Ashwell, Margaret, & Hsieh, S. D. (2005). Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on Obesity. International Journal of Food Sciences and Nutrition, 56(5), 303–307. https://doi.org/10.1080/09637480500195066

Bays, H. E., McCarthy, W., Christensen, S., Tondt, J., Karjoo, S., & Davisson, L. (2021). Obesity algorithm eBook, presented by the Obesity Medicine Association. https://www.tomf.org/gd-resources/downloads/Bays_11.pdf

Bergman, R. N., Stefanovski, D., Buchanan, T. A., Sumner, A. E., Reynolds, J. C., Sebring, N. G., ... & Watanabe, R. M. (2011). A better index of body adiposity. Obesity, 19(5), 1083-1089. https://doi.org/10.1038/oby.2011.38

Bhadra, M., Mukhopadhyay, A., & Bose, K. (2005). Overweight and obesity among adult Bengalee Hindu women of Kolkata, India. Hum Ecol, 13, 77-83.

Blüher, M. (2019). Obesity: Global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8

Brambilla, P., Bedogni, G., Heo, M., & Pietrobelli, A. (2013). Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. International journal of obesity, 37(7), 943-946. https://doi.org/10.1038/ijo.2013.32

Bray, G. A. (2004). Medical consequences of obesity. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2583–2589. https://doi.org/10.1210/jc.2004-0535

Choi, J. R., Koh, S. B., & Choi, E. (2018). Waist-to-height ratio index for predicting incidences of hypertension: the ARIRANG study. BMC Public Health, 18(1), 1-6. https://doi.org/10.1186/s12889-018-5662-8

Chong, B., Jayabaskaran, J., Kong, G., Chan, Y. H., et al. (2023). Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. eClinicalMedicine, 57: 101850. https://doi.org/10.1016/j.eclinm.2023.101850

Czernichow, S., Kengne, A. P., Stamatakis, E., Hamer, M., & Batty, G. D. (2011). Body mass index, waist circumference and waist–hip ratio: which is the better discriminator of cardiovascular disease mortality risk? Evidence from an individual‐participant meta‐analysis of 82 864 participants from nine cohort studies. Obesity Reviews, 12(9), 680-687. https://doi.org/10.1111/j.1467-789x.2011.00879.x

De Koning, L., Merchant, A. T., Pogue, J., & Anand, S. S. (2007). Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. European Heart Journal, 28(7), 850-856. https://doi.org/10.1093/eurheartj/ehm026

Fauziana, R., Jeyagurunathan, A., Abdin, E., Vaingankar, J., Sagayadevan, V., Shafie, S., ... & Subramaniam, M. (2016). Body mass index, waist-hip ratio and risk of chronic medical condition in the elderly population: results from the Well-being of the Singapore Elderly (WiSE) Study. BMC Geriatrics, 16, 1-9. https://doi.org/10.1186/s12877-016-0297-z

Gopalan, C. (1998). Obesity in the Indian urban'middle class'. NFI Bulletin, 19, 1-4. https://www.nutritionfoundationofindia.res.in/wp-content/uploads/2021/10/jan-1998-bulletin.pdf

Gopinath, N., Chadha, S. L., Sood, A. K., Shekhawat, S., Bindra, S. P., & Tandon, R. (1994). Epidemiological study of hypertension in young (15-24 yr) Delhi urban population. The Indian Journal of Medical Research, 99, 32-37.

Gray, L. J., Yates, T., Davies, M. J., Brady, E., Webb, D. R., Sattar, N., & Khunti, K. (2011). Defining obesity cut-off points for migrant South Asians. PloS One, 6(10), e26464. https://doi.org/10.1371/journal.pone.0026464

Han, T. S., Sattar, N., & Lean, M. (2006). Assessment of obesity and its clinical implications. BMJ, 333(7570), 695-698. https://doi.org/10.1136/bmj.333.7570.695

Hsieh, S. D., & Yoshinaga, H. (1995). Waist/height ratio as a simple and useful predictor of coronary heart disease risk factors in women. Internal Medicine, 34(12), 1147-1152. https://doi.org/10.2169/internalmedicine.34.1147

Janssen, I., Katzmarzyk, P. T., & Ross, R. (2004). Waist circumference and not body mass index explains obesity-related health risk. The American Journal of Clinical Nutrition, 79(3), 379–384. https://doi.org/10.1093/ajcn/79.3.379

Kelly, T., Yang, W., Chen, C.-S., Reynolds, K., & He, J. (2008). Global burden of obesity in 2005 and projections to 2030. International Journal of Obesity, 32(9), 1431–1437. https://doi.org/10.1038/ijo.2008.102

Kim, S. H., Choi, H., Won, C. W., & Kim, B. S. (2016). Optimal cutoff points of anthropometric parameters to identify high coronary heart disease risk in Korean adults. Journal of Korean Medical Science, 31(1), 61-66. https://doi.org/10.3346/jkms.2016.31.1.61

Meldrum, D. R., Morris, M. A., & Gambone, J. C. (2017). Obesity pandemic: causes, consequences, and solutions—but do we have the will?. Fertility and sterility, 107(4), 833-839. https://doi.org/10.1016/j.fertnstert.2017.02.104

Morais, S. R. D., Viana, A. C. C., Daltro, A. F. C. S., & Mendonça, P. D. S. (2018). Cardiovascular risk and use of conicity index in patients submitted to autologous hematopoietic stem cell transplantation. Einstein (São Paulo), 16. https://doi.org/10.1590/s1679-45082018ao4253

Müller, M. J., & Geisler, C. (2017). Defining obesity as a disease. European Journal of Clinical Nutrition, 71(11), 1256-1258. https://doi.org/10.1038/ejcn.2017.155

O'Connell, S. A., & Smith, C. (2016). Economic growth and child undernutrition. The Lancet Global Health, 4(12), e901-e902. https://doi.org/10.1016/s2214-109x(16)30250-9

Organization., World Health WHO factsheet on obesity and overweight: World Health Organization fact sheet, 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-andoverweight (accessed November 13, 2023).

Rada, R., Tatjana, P., Jelena, B., & Perica, V. (2019). Predictive Ability of Waist-to-Hip-Ratio and Waist-to-Height-Ratio in Relation to Overweight/Obesity in Adolescents from Vojvodina (the Republic of Serbia). Progress in Nutrition. https://doi.org/10.23751/pn.v21i4.8928

Ramachandran, A., & Snehalatha, C. (2010). Rising burden of obesity in Asia. Journal of Obesity, 2010, 1–8. https://doi.org/10.1155/2010/868573

Visweswara Rao, K., Balakrishna, N., & Shatrugna, V. (1995). Variations in forms of malnutrition in well-to-do adults and the associated factors. Man in India, 75(3), 241-249.

Report of a WHO Expert Consultation Geneva 2008, Waist Circumference and Waist-Hip Ratio, 8–11 December 2008. Retrieved 15.06.2017. http://apps.who.int/iris/bitstream/10665/44583/1/9789241501491_eng.pdf

Roriz, A. K. C., Passos, L. C. S., de Oliveira, C. C., Eickemberg, M., Moreira, P. D. A., & Sampaio, L. R. (2014). Evaluation of the accuracy of anthropometric clinical indicators of visceral fat in adults and elderly. PloS one, 9(7), e103499. https://doi.org/10.1371/journal.pone.0103499

Sahakyan, K. R., Somers, V. K., Rodriguez-Escudero, J. P., Hodge, D. O., Carter, R. E., Sochor, O., ... & Lopez-Jimenez, F. (2015). Normal-weight central obesity: implications for total and cardiovascular mortality. Annals of internal medicine, 163(11), 827-835. https://doi.org/10.7326/m14-2525

Sengupta, P., Chaudhuri, P., & Bhattacharya, K. (2013). Screening obesity by direct and derived anthropometric indices with evaluation of physical efficiency among female college students of Kolkata. Annals of Medical and Health Sciences Research, 3(4), 517-522. https://doi.org/10.4103/2141-9248.122066

Shao, J., Yu, L., Shen, X., Li, D., & Wang, K. (2010). Waist-to-height ratio, an optimal predictor for obesity and metabolic syndrome in Chinese adults. The Journal of Nutrition, Health & Aging, 14, 782-785. https://doi.org/10.1007/s12603-010-0106-x

Vasquez, F., Correa-Burrows, P., Blanco, E., Gahagan, S., & Burrows, R. (2019). A waist-to-height ratio of 0.54 is a good predictor of metabolic syndrome in 16-year-old male and female adolescents. Pediatric Research, 85(3), 269-274. https://doi.org/10.1038/s41390-018-0257-8

Vazquez, G., Duval, S., Jacobs Jr, D. R., & Silventoinen, K. (2007). Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiologic Reviews, 29(1), 115-128. https://doi.org/10.1093/epirev/mxm008

Venkatrao, M., Nagarathna, R., Majumdar, V., Patil, S. S., Rathi, S., & Nagendra, H. (2020). Prevalence of obesity in India and its neurological implications: a multifactor analysis of a nationwide cross-sectional study. Annals of Neurosciences, 27(3-4), 153-161. https://doi.org/10.1177/0972753120987465

Zargar, A. H., Masoodi, S. R., Laway, B. A., Khan, A. K., Wani, A. I., Bashir, M. I., & Akhtar, S. (2000). Prevalence of obesity in adults--an epidemiological study from Kashmir Valley of Indian Subcontinent. The Journal of the Association of Physicians of India, 48(12), 1170-1174.

Published

15-01-2024

How to Cite

Bandyopadhyay, A. R., Ghosh, K. ., & Chatterjee, D. (2024). Waist Stature Ratio: A Measure of Adiposity and Body Fat Composition in Asian Indian. Malaysian Journal of Medical Research (MJMR), 8(1), 9-14. https://doi.org/10.31674/mjmr.2024.v08i01.002

Metrics