“Phytochemicals in Diabetic Neuropathy: From Traditional Remedies to Modern Science”

Authors

  • Purvia Jagru Lincoln university college malaysia
  • Satheesh Babu Natarajan Lincoln university college malaysia
  • Nivetha Shanmugam Lincoln university college malaysia
  • Thanusha Perera Lincoln university college malaysia
  • Saravana Kumar Parameswaran Lincoln university college malaysia

DOI:

https://doi.org/10.31674/ijfdc.2025.v1i02.002

Abstract

Diabetic neuropathy is one of the most prevalent and serious consequences of diabetes, characterized by chronic discomfort, sensory loss, and gradual nerve damage. Current pharmacological treatments give symptomatic relief but do not address underlying causes such as oxidative stress, inflammation, mitochondrial dysfunction, and advanced glycation end-product build-up. Phytochemicals are gaining popularity as viable therapeutic agents due to their varied bioactivities, which include antioxidant, anti-inflammatory, and glucose-modulating properties. Traditional systems such as Ayurveda, Traditional Chinese Medicine, and Unani have long used herbal formulations including turmeric, ginseng, fenugreek, and ashwagandha for nerve-related illnesses, and modern research has begun verifying these therapies through preclinical and clinical trials. Curcumin, resveratrol, ginsenosides, and alkaloids are examples of phytochemicals with neuroprotective properties. They improve nerve conduction, modulate oxidative stress, and promote neuronal regeneration. Experiments show that they can minimize oxidative and inflammatory damage, improve mitochondrial function, and control neurotrophic factors. However, clinical applicability is still limited due to difficulties such as low bioavailability, a lack of uniformity, and insufficient large-scale investigations. To address these limitations, researchers are investigating advances in nanotechnology-based delivery methods, herbal-drug combination tactics, and customized treatment approaches. Overall, phytochemicals serve as a bridge between traditional treatments and current science, providing multi-targeted techniques that may supplement or enhance existing therapies. These plant-derived chemicals have tremendous potential for safer, more effective, and long-term diabetic neuropathy care since they address both symptomatic alleviation and disease change.

Keywords:

Keywords: Diabetic neuropathy, phytochemicals, oxidative stress, neuroprotection, traditional medicine, nanotechnology

Downloads

Download data is not yet available.

References

Alam, W., Ahmed, I., Ali, M., Khan, F., Neurological, H. K.-P. and, & 2023, undefined. (n.d.). Neuroprotective effect of terpenoids. Elsevier. Retrieved September 11, 2025, from https://www.sciencedirect.com/science/article/pii/B9780128244678000061

Alberti, K. G. M. M., Zimmet, P., Shaw, J., George, : K, Alberti, M. M., Aschner, P., Balkau, B., Bennett, P., Boyko, E., Brunzell, J., Chan, J., Defronzo, R., Després, J.-P., Groop, L., Laakso, M., Mbanya, J. C., Pan, C. Y., Ramachandran, A., Standl, E., … Unwin, N. (2006). Metabolic syndrome—a new world‐wide definition. A consensus statement from the international diabetes federation. Wiley Online Library, 23(5), 469–480. https://doi.org/10.1111/J.1464-5491.2006.01858.X

Ali, A., Omics, N. S.-A. P. of P. in the E. of, & 2022, undefined. (2022). Concept of Diabetes Mellitus and Antidiabetic Plant in the Unani System of Medicine. Taylorfrancis.Com, 101–124. https://doi.org/10.1201/9781003282860-6/CONCEPT-DIABETES-MELLITUS-ANTIDIABETIC-PLANT-UNANI-SYSTEM-MEDICINE-AHMAD-ALI-NIKHAT-SHAIKH

Ali, B., Al-Wabel, N., Shams, S., … A. A.-A. P. J. of, & 2015, undefined. (2015). Essential oils used in aromatherapy: a systemic review. Elsevier. https://doi.org/10.4103/2221-1691.306405

Alu’datt, M. H., Rababah, T., Al-ali, S., Tranchant, C. C., Gammoh, S., Alrosan, M., Kubow, S., Tan, T. C., & Ghatasheh, S. (2024a). Current perspectives on fenugreek bioactive compounds and their potential impact on human health: A review of recent insights into functional foods and other high. Wiley Online Library, 89(4), 1835–1864. https://doi.org/10.1111/1750-3841.16970

Alu’datt, M. H., Rababah, T., Al-ali, S., Tranchant, C. C., Gammoh, S., Alrosan, M., Kubow, S., Tan, T. C., & Ghatasheh, S. (2024b). Current perspectives on fenugreek bioactive compounds and their potential impact on human health: A review of recent insights into functional foods and other high. Wiley Online Library, 89(4), 1835–1864. https://doi.org/10.1111/1750-3841.16970

Azimi, P., Ghiasvand, R., Feizi, A., Hosseinzadeh, J., Bahreynian, M., Hariri, M., & Khosravi-Boroujeni, H. (2016). cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized …. Taylor & Francis, 25(3), 133–140. https://doi.org/10.3109/08037051.2015.1111020

Balkrishna, A., Pathak, R., … S. B.-C. D., & 2023, undefined. (2022). Molecular Insights of Plant Phytochemicals Against Diabetic Neuropathy. Benthamdirect.Com, 19(9). https://doi.org/10.2174/1573399819666220825124510

Brown, M., of, A. A.-A. of N. O. J., & 1984, undefined. (1984). Diabetic neuropathy. Wiley Online Library, 15(1), 2–12. https://doi.org/10.1002/ANA.410150103

Callaghan, B., Price, R., Jama, E. F.-, & 2015, undefined. (n.d.). Distal symmetric polyneuropathy: a review. Jamanetwork.Com. Retrieved September 10, 2025, from https://jamanetwork.com/journals/jama/article-abstract/2471578

Cao, W., Dou, Y., & Li, A. (2018). Resveratrol boosts cognitive function by targeting SIRT1. Springer, 43(9), 1705–1713. https://doi.org/10.1007/S11064-018-2586-8

Diabetic neuropathy: mechanisms to management. (n.d.). Elsevier. Retrieved September 10, 2025, from https://www.sciencedirect.com/science/article/pii/S0163725808001022

Durg, S., Bavage, S., & Shivaram, S. B. (2020). Withania somnifera (Indian ginseng) in diabetes mellitus: A systematic review and meta‐analysis of scientific evidence from experimental research to clinical. Wiley Online Library, 34(5), 1041–1059. https://doi.org/10.1002/PTR.6589

Faheem, M., Khan, A., Ali Shah, F., Li, S., Khan, H., Wali Khan University Mardan, A., Nasir, A., University, A., Korea Yaswanth Kuthati, S., General Hospital, C., Syed Qamar Abbas, T., & A-u, K. (2022). Investigation of natural compounds for therapeutic potential in streptozotocin-induced diabetic neuroinflammation and neuropathic pain. Frontiersin.Org, 13, 1019033. https://doi.org/10.3389/FPHAR.2022.1019033/FULL

Feldman, E., Nave, K., Jensen, T., Neuron, D. B.-, & 2017, undefined. (n.d.). New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Cell.ComEL Feldman, KA Nave, TS Jensen, DLH BennettNeuron, 2017•cell.Com. Retrieved September 10, 2025, from https://www.cell.com/neuron/fulltext/S0896-6273(17)30089-2?codeu003dcell-site=

Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Journals.Physiology.OrgJM Forbes, ME CooperPhysiological Reviews, 2013•journals.Physiology.Org, 93(1), 137–188. https://doi.org/10.1152/PHYSREV.00045.2011

Gonçalves, N., Vægter, C., … H. A.-N. R., & 2017, undefined. (n.d.-a). Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nature.ComNP Gonçalves, CB Vægter, H Andersen, L Østergaard, NA Calcutt, TS JensenNature Reviews Neurology, 2017•nature.Com. Retrieved September 10, 2025, from https://www.nature.com/articles/nrneurol.2016.201

Gonçalves, N., Vægter, C., … H. A.-N. R., & 2017, undefined. (n.d.-b). Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nature.ComNP Gonçalves, CB Vægter, H Andersen, L Østergaard, NA Calcutt, TS JensenNature Reviews Neurology, 2017•nature.Com. Retrieved September 15, 2025, from https://www.nature.com/articles/nrneurol.2016.201

Hao, C.-Z., Wu, F., Lu, L., Wang, J., Guo, Y., Liu, A.-J., Liao, W.-J., & Zheng, G.-Q. (2012). Chinese medicine in diabetic peripheral neuropathy: experimental research on nerve repair and regeneration. Wiley Online Library, 2012. https://doi.org/10.1155/2012/191632

Hashim, M., Badruddeen, Akhtar, J., Khan, M. I., Ahmad, M., Islam, A., & Ahmad, A. (2023). Diabetic neuropathy: an overview of molecular pathways and protective mechanisms of phytobioactives. Benthamdirect.Com, 24(7), 758–776. https://doi.org/10.2174/0118715303266444231008143430

Haxhiraj, M., White, K., sciences, C. T.-I. journal of molecular, & 2024, undefined. (2024). The role of fenugreek in the management of type 2 diabetes. Mdpi.Com. https://doi.org/10.3390/ijms25136987

Hu, H. C., Lei, Y. H., Zhang, W. H., & Luo, X. Q. (2022). Antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: a systematic review and meta-analysis of animal studies. Frontiersin.Org, 13. https://doi.org/10.3389/FPHAR.2022.841818/FULL

Hussain, Y., Khan, H., Alotaibi, G., Khan, F., Molecules, W. A.-, & 2022, undefined. (n.d.). How curcumin targets inflammatory mediators in diabetes: therapeutic insights and possible solutions. Mdpi.Com. Retrieved September 10, 2025, from https://www.mdpi.com/1420-3049/27/13/4058

journal, A. M.-N., & 2015, undefined. (2015). The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Springer, 14(1). https://doi.org/10.1186/S12937-015-0098-9

Kim, J., Noh, W., Kim, A., Choi, Y., sciences, Y. K. of molecular, & 2023, undefined. (n.d.). The effect of fenugreek in type 2 diabetes and prediabetes: a systematic review and meta-analysis of randomized controlled trials. Mdpi.Com. Retrieved September 10, 2025, from https://www.mdpi.com/1422-0067/24/18/13999

Kirkham, S., Akilen, R., Sharma, S., & Tsiami, A. (2009). The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Wiley Online Library, 11(12), 1100–1113. https://doi.org/10.1111/J.1463-1326.2009.01094.X

Konar, A., Shah, N., Singh, R., Saxena, N., Kaul, S. C., Wadhwa, R., & Thakur, M. K. (2011). Ashwagandha enhances behavior and brain neurotransmitters in Tramadol treated and withdrawal rats. Journals.Ekb.Eg, 6(11). https://doi.org/10.1371/journal.pone.0027265

Kuboyama, T., Tohda, C., & Komatsu, K. (2005). Neuritic regeneration and synaptic reconstruction induced by withanolide A. Wiley Online Library, 144(7), 961–971. https://doi.org/10.1038/SJ.BJP.0706122

Kumar, H., Kim, I., More, S., Kim, B., reports, D. C.-N. product, & 2014, undefined. (n.d.). Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Pubs.Rsc.OrgH Kumar, IS Kim, SV More, BW Kim, DK ChoiNatural Product Reports, 2014•pubs.Rsc.Org. Retrieved September 10, 2025, from https://pubs.rsc.org/en/content/articlehtml/2014/np/c3np70065h

Kumar Pasupulati, A., Chitra, P. S., & Reddy, G. B. (2016a). Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Degruyterbrill.Com, 7(5–6), 293–299. https://doi.org/10.1515/BMC-2016-0021/HTML

Li, S., Wang, Z., Liu, G., & Chen, M. (2024). Neurodegenerative diseases and catechins:(−)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Frontiersin.Org, 11. https://doi.org/10.3389/FNUT.2024.1425839/FULL

Lim, D. W., Kim, J. G., Lim, E. Y., & Kim, Y. T. (2018). Antihyperalgesic effects of ashwagandha (Withania somnifera root extract) in rat models of postoperative and neuropathic pain. Springer, 26(1), 207–215. https://doi.org/10.1007/S10787-017-0389-1

Lima, E. de, Laurindo, L., Catharin, V., Metabolites, R. D.-, & 2025, undefined. (n.d.-a). Polyphenols, alkaloids, and terpenoids against neurodegeneration: Evaluating the neuroprotective effects of phytocompounds through a comprehensive. Mdpi.Com. Retrieved September 11, 2025, from https://www.mdpi.com/2218-1989/15/2/124

Lima, E. de, Laurindo, L., Catharin, V., Metabolites, R. D.-, & 2025, undefined. (n.d.-b). Polyphenols, alkaloids, and terpenoids against neurodegeneration: Evaluating the neuroprotective effects of phytocompounds through a comprehensive. Mdpi.Com. Retrieved September 14, 2025, from https://www.mdpi.com/2218-1989/15/2/124

Mallet, M. L., Hadjivassiliou, M., Sarrigiannis, P. G., & Zis, P. (2020). The role of oxidative stress in peripheral neuropathy. Springer, 70(7), 1009–1017. https://doi.org/10.1007/S12031-020-01495-X

Manju, undefined, Biotechnology, N. B.-M., & 2024, undefined. (2024). Exploring the potential therapeutic approach using ginsenosides for the management of neurodegenerative disorders. Springer, 66(7), 1520–1536. https://doi.org/10.1007/S12033-023-00783-2

Moradi, S. Z., Jalili, F., Farhadian, N., Joshi, T., Wang, M., Zou, L., Cao, H., Farzaei, M. H., & Xiao, J. (2022). Polyphenols and neurodegenerative diseases: Focus on neuronal regeneration. Taylor & Francis, 62(13), 3421–3436. https://doi.org/10.1080/10408398.2020.1865870

Nature, M. B.-, & 2001, undefined. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature.ComM BrownleeNature, 2001•nature.Com. https://www.nature.com/articles/414813a

Nguyen, V., Taine, E., Meng, D., Cui, T., Nutrients, W. T.-, & 2024, undefined. (n.d.). Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials. Mdpi.Com. Retrieved September 10, 2025, from https://www.mdpi.com/2072-6643/16/7/924

Norouzkhani, N., Ghannadi Karimi, A., Badami, N., Jalalifar, E., Mahmoudvand, B., Ansari, A., Pakrou Sariyarighan, N., Alijanzadeh, D., Aghakhani, S., Shayestehmehr, R., Arzaghi, M., Sheikh, Z., Salami, Y., Hesam Marabi, M., Abdi, A., Deravi, N., Ben-Azu, B., Semwal, P., Sariyarighan, P. N., & Sariyarighan, P. (2021). Natural medicines for the treatment of epilepsy: bioactive components, pharmacology and mechanism. Frontiersin.Org, 12. https://doi.org/10.3389/FPHAR.2021.604040/FULL

Osmanlıoğlu, H. Ö., & Nazıroğlu, M. (2024). Resveratrol modulates diabetes-induced neuropathic pain, apoptosis, and oxidative neurotoxicity in mice through TRPV4 channel inhibition. Springer, 61(9), 7269–7286. https://doi.org/10.1007/S12035-024-04311-4

Pandey, K., longevity, S. R.-O. medicine and cellular, & 2009, undefined. (2009a). Plant polyphenols as dietary antioxidants in human health and disease. Wiley Online LibraryKB Pandey, SI RizviOxidative Medicine and Cellular Longevity, 2009•Wiley Online Library. https://doi.org/10.1155/2020/2158376

Pandey, K., longevity, S. R.-O. medicine and cellular, & 2009, undefined. (2009b). Plant polyphenols as dietary antioxidants in human health and disease. Wiley Online LibraryKB Pandey, SI RizviOxidative Medicine and Cellular Longevity, 2009•Wiley Online Library. https://doi.org/10.1155/2020/2158376

Park, K., Kim, Y., Kim, J., Kang, S., Park, J. S., Ahn, C. W., & Nam, J. S. (2020). Supplementation with Korean Red Ginseng Improves Current Perception Threshold in Korean Type 2 Diabetes Patients: A Randomized, Double‐Blind, Placebo. Wiley Online Library, 2020. https://doi.org/10.1155/2020/5295328

Pasupuleti, V. K., & Anderson, J. W. (2009). Cinnamon, glucose, and insulin sensitivity. Wiley Online Library, 1–489. https://doi.org/10.1002/9780813804149

Piccialli, I., Tedeschi, V., Caputo, L., D’Errico, S., Ciccone, R., De Feo, V., Secondo, A., & Pannaccione, A. (2022). Exploring the therapeutic potential of phytochemicals in Alzheimer’s disease: Focus on polyphenols and monoterpenes. Frontiersin.Org, 13, 1. https://doi.org/10.3389/FPHAR.2022.876614/FULL

Pop-Busui, R., Boulton, A., Feldman, E., … V. B.-D., & 2016, undefined. (n.d.). Diabetic neuropathy: a position statement by the American Diabetes Association. Pmc.Ncbi.Nlm.Nih.GovR Pop-Busui, AJM Boulton, EL Feldman, V Bril, R Freeman, RA Malik, JM SosenkoDiabetes Care, 2016•pmc.Ncbi.Nlm.Nih.Gov. Retrieved September 10, 2025, from https://pmc.ncbi.nlm.nih.gov/articles/PMC6977405/

Qin, B., Panickar, K. S., & Anderson, R. A. (2010). Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journals.Sagepub.Com, 4(3), 685–693. https://doi.org/10.1177/193229681000400324

Rafehi, H., Ververis, K., & Karagiannis, T. C. (2012). Controversies surrounding the clinical potential of cinnamon for the management of diabetes. Wiley Online Library, 14(6), 493–499. https://doi.org/10.1111/J.1463-1326.2011.01538.X

Rahaman, M., Journal, S. G.-T. N. P., & 2025, undefined. (2024). Natural Product Interventions in Peripheral Diabetic Neuropathy: A Multi-target Approach. Benthamdirect.Com, 15(9). https://doi.org/10.2174/0122103155334599240909074350

Rahman, Md. M., Islam, Md. R., Rabbi, F., Islam, M. T., Sultana, S., Ahmed, M., Sehgal, A., Singh, S., Sharma, N., & Behl, T. (2022). Bioactive compounds and diabetes mellitus: prospects and future challenges. Benthamdirect.Com, 28(16), 1304–1320. https://doi.org/10.2174/1381612828666220412090808

Reljanovic, M., Reichel, G., Rett, K., Lobisch, M., Schuette, K., Möller, W., Tritschler, H. J., & Mehnert, H. (1999). Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): A two year multicenter randomized double-blind placebo-controlled trial. Taylor & Francis, 31(3), 171–179. https://doi.org/10.1080/10715769900300721

Ridouh, I., Plants, K. H.-, & 2022, undefined. (n.d.). Essential oils and neuropathic pain. Mdpi.ComI Ridouh, KV HackshawPlants, 2022•mdpi.Com. Retrieved September 11, 2025, from https://www.mdpi.com/2223-7747/11/14/1797

Saikia, L., Barbhuiya, S. A. A., Saikia, K., Kalita, P., & Dutta, P. P. (2024). Therapeutic Potential of Quercetin in Diabetic Neuropathy and Retinopathy: Exploring Molecular Mechanisms. Benthamdirect.Com, 24(27), 2351–2361. https://doi.org/10.2174/0115680266330678240821060623

Shah, A., Thummar, J., Saiyed, H., Joshi, E., Balar, S., Desai, U., Rawal, R., & Kumar, K. (n.d.). Phytochemicals as Therapeutic Alternatives and their role in Managing Diabetic Complication-A Review. Kronika.Ac. Retrieved September 10, 2025, from https://kronika.ac/wp-content/uploads/9-KKJ2131.pdf

Singh Jaggi, A., Parkash Singh, V., Bali, A., & Singh, N. (2014). Advanced glycation end products and diabetic complications. Synapse.Koreamed.OrgVP Singh, A Bali, N Singh, AS JaggiThe Korean Journal of Physiology & Pharmacology: Official, 2014•synapse.Koreamed.Org, 18, 1–14. https://doi.org/10.4196/kjpp.2014.18.1.1

Sivakumar, P. M., Prabhakar, P. K., Cetinel, S., R., N., & Prabhawathi, V. (2022). Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy. Benthamdirect.Com, 22(14), 1828–1846. https://doi.org/10.2174/1389557522666220309140855

Sood, A., Kumar, B., Singh, S. K., Prashar, P., Gautam, A., Gulati, M., Pandey, N. K., Melkani, I., Awasthi, A., Saraf, S. A., Vidari, G., Ozdemir, M., Hussain, F. H. S., Anwar, E. T., Ameen, M. S. M., Gupta, S., & Porwal, O. (2020). Flavonoids as potential therapeutic agents for the management of diabetic neuropathy. Benthamdirect.Com, 26(42), 5468–5487. https://doi.org/10.2174/1381612826666200826164322

Spandana, C., Anitha, K., … J. M.-J. of N., & 2025, undefined. (n.d.). Phytopharmaceutical Interventions in Neurodegenerative Disorders: Emerging Trends and Prospects. Researchgate.Net. Retrieved September 11, 2025, from https://www.researchgate.net/profile/Lalchand-Devhare/publication/394049975_Phytopharmaceutical_Interventions_in_Neurodegenerative_Disorders_Emerging_Trends_and_Prospects/links/688709c0253dcb78df88b239/Phytopharmaceutical-Interventions-in-Neurodegenerative-Disorders-Emerging-Trends-and-Prospects.pdf

Srinivasan, S., Stevens, M., Diabetes, J. W.-, & 2000, undefined. (n.d.). Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetesjournals.OrgS Srinivasan, M Stevens, JW WileyDiabetes, 2000•diabetesjournals.Org. Retrieved September 10, 2025, from https://diabetesjournals.org/diabetes/article-abstract/49/11/1932/10553

Sun, A., Xu, X., Lin, J., Cui, X., & Xu, R. (2015). Neuroprotection by saponins. Wiley Online Library, 29(2), 187–200. https://doi.org/10.1002/PTR.5246

Tesfaye, S., and, D. S.-D. research, & 2012, undefined. (2012). Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Wiley Online LibraryS Tesfaye, D SelvarajahDiabetes/Metabolism Research and Reviews, 2012•Wiley Online Library, 28(SUPPL. 1), 8–14. https://doi.org/10.1002/DMRR.2239

Tiwari, M., Gupta, P., … A. S.-N. and, & 2025, undefined. (2025). Role of Nutraceuticals in Addressing Obesity-Related Comorbidities. Taylorfrancis.Com, 174–211. https://doi.org/10.4324/9781003480150-9/ROLE-NUTRACEUTICALS-ADDRESSING-OBESITY-RELATED-COMORBIDITIES-MAMTA-TIWARI-PRAKASH-CHANDRA-GUPTA-AJAY-KUMAR-SINGH-NISHA-SHARMA

Uddin, M. S., Al Mamun, A., Rahman, M. A., Kabir, M. T., Alkahtani, S., Alanazi, I. S., Perveen, A., Ashraf, G. M., Bin-Jumah, M. N., & Abdel-Daim, M. M. (2020). Exploring the promise of flavonoids to combat neuropathic pain: from molecular mechanisms to therapeutic implications. Frontiersin.Org, 14, 1–18. https://doi.org/10.3389/FNINS.2020.00478/FULL

Vincent, A., Russell, J., … P. L.-E., & 2004, undefined. (n.d.). Oxidative stress in the pathogenesis of diabetic neuropathy. Academic.Oup.ComAM Vincent, JW Russell, P Low, EL FeldmanEndocrine Reviews, 2004•academic.Oup.Com. Retrieved September 10, 2025, from https://academic.oup.com/edrv/article-abstract/25/4/612/2355264

Vinik, A., Nevoret, M., clinics, C. C.-… and metabolism, & 2013, undefined. (n.d.). Diabetic neuropathy. Endo.Theclinics.Com. Retrieved September 10, 2025, from https://www.endo.theclinics.com/article/S0889-8529(13)00052-2/abstract

Wan, D., Zhou, Y., Wang, K., Hou, Y., Hou, R., bulletin, X. Y.-B. research, & 2016, undefined. (2016). Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Elsevier, 121, 255–262. https://doi.org/10.1016/j.brainresbull.2016.02.011

Wang, W., Antioxidants, P. K.-, & 2020, undefined. (n.d.). Oxidative stress and antioxidant treatments in cardiovascular diseases. Mdpi.Com. Retrieved September 10, 2025, from https://www.mdpi.com/2076-3921/9/12/1292?utm_campaign=CHD_xtendlife-cx8-review

Yong, C. J., Young, B. K., Seung, W. P., Sung, N. H., Byung, K. M., Hyun, J. H., Jeong, T. K., & Jong, S. S. (2005). Neuroprotective effect of ginseng total saponins in experimental traumatic brain injury. Synapse.Koreamed.Org, 20(2), 291–296. https://doi.org/10.3346/JKMS.2005.20.2.291

Zamanian, M. Y., Alsaab, H. O., Golmohammadi, M., Yumashev, A., Mhussan Jabbar, A., Abid, M. K., Joshi, A., Alawadi, A., Jafer, N. S., Kianifar, F., Obakiro, S. B., Kadhem Abid, M., & Alawadi, A. H. (2024). NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. https://doi.org/10.22541/AU.171229790.08253802

Zhang, H., Zhang, J., Ungvari, Z., & Zhang, C. (2009). Resveratrol improves endothelial function: role of TNFα and vascular oxidative stress. Ahajournals.Org, 29(8), 1164–1171. https://doi.org/10.1161/ATVBAHA.109.187146

Zhao, A., Liu, N., Yao, M., Zhang, Y., Yao, Z., Feng, Y., Liu, J., & Zhou, G. (2022). A review of neuroprotective effects and mechanisms of ginsenosides from Panax ginseng in treating ischemic stroke. Frontiersin.Org, 13. https://doi.org/10.3389/FPHAR.2022.946752/FULL

Zhu, C., Liu, N., Tian, M., Ma, L., Yang, J., Lan, X., Ma, H., Niu, J., & Yu, J. (2020a). Effects of alkaloids on peripheral neuropathic pain: a review. Springer, 15(1). https://doi.org/10.1186/S13020-020-00387-X

Zhu, C., Liu, N., Tian, M., Ma, L., Yang, J., Lan, X., Ma, H., Niu, J., & Yu, J. (2020b). Effects of alkaloids on peripheral neuropathic pain: a review. Springer, 15(1). https://doi.org/10.1186/S13020-020-00387-X

Zhu, L., Yang, M., Fan, L., Yan, Q., Zhang, L., Mu, P., & Lu, F. (2025). Interaction between resveratrol and SIRT1: role in neurodegenerative diseases. Springer, 398(1), 89–101. https://doi.org/10.1007/S00210-024-03319-W

Ziegler, D., Reljanovic, M., Mehnert, H., & Gries, F. A. (1999). α-Lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Thieme-Connect.Com, 107(7), 421–430. https://doi.org/10.1055/S-0029-1212132

Published

20-11-2025

How to Cite

Jagru, P., Babu Natarajan, S. ., Shanmugam, N. ., Perera, T. ., & Parameswaran, S. K. . (2025). “Phytochemicals in Diabetic Neuropathy: From Traditional Remedies to Modern Science”. International Journal of Food, Drug and Cosmetics (IJFDC), 1(2), 16-38. https://doi.org/10.31674/ijfdc.2025.v1i02.002