Mycoremediation of Textile Dye Effluents Using Termitomyces heimii Mushroom: A Sustainable Biocatalyst Approach

Authors

  • Erlina Binti Abdullah Department of Biotechnology, School of Health & Applied Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Muhamed Musaab Department of Biotechnology, School of Health & Applied Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Fatima Amin Department of Biotechnology, School of Health & Applied Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Ahmad Aqil Zamri Department of Biotechnology, School of Health & Applied Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Izyan Yasir Department of Biotechnology, School of Health & Applied Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Asita Elengoe Department of Biotechnology, School of Health & Applied Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.31674/ijbb.2025.v02i04.004

Abstract

Textile dye effluents pose significant environmental and health challenges due to their complex chemical composition, high toxicity, and resistance to conventional treatment methods. Mycoremediation, the use of fungi and their enzymatic systems to degrade pollutants, has emerged as a sustainable and cost-effective alternative for treating industrial wastewater. White-rot fungi, particularly those producing ligninolytic enzymes such as laccase, lignin peroxidase, and manganese peroxidase, have demonstrated remarkable potential in degrading recalcitrant synthetic dyes. However, the bioremediation potential of Termitomyces heimii, a basidiomycete mushroom with robust enzymatic capabilities adapted to decomposing lignocellulosic materials, remains largely unexplored. This review aims to evaluate the current state of knowledge regarding Termitomyces heimii as a biocatalyst for textile dye remediation, examining its enzymatic mechanisms, degradation efficiency across various dye classes, optimal operational conditions, and comparative performance with established fungal species. The fungus exhibits significant promise due to its robust ligninolytic enzyme, including laccases and peroxidases, which play a crucial role in the degradation of recalcitrant pollutants. In addition, its fast-growing mycelial network, tolerance to environmental stress, and ability to bioaccumulate toxic metals highlight its suitability for application in contaminated soils and waste substrates. In conclusion, T. heimii represents an underexplored yet highly promising candidate for mycoremediation strategies. Further experimental validation, optimization of culture conditions, and field-scale studies are required to fully harness its remediation potential. Integrating T. heimii into sustainable bioremediation frameworks could contribute significantly to environmentally friendly pollution management and ecosystem restoration.

Keywords:

Mycoremediation, Termitomyces heimii, Textile Dye Effluents, Biocatalyst, Ligninolytic Enzymes, Sustainable Biotechnology

References

Adane, T., Adugna, A.T., & Alemayehu, E. (2021). Textile industry effluent treatment techniques. Journal of Chemistry, 2021(1), 5314404.

Akter, T., Protity, A.T., Shaha, M., Al Mamun, M., & Hashem, A. (2023). The impact of textile dyes on the environment. In Nanohybrid materials for treatment of textile dyes (pp. 401-431). Singapore: Springer Nature Singapore.

Akinsemolu, A.A. (2023). Symbiosis to Sustainability: Exploring the role of Termitomyces clypeatus in ecosystem services and community livelihoods in West African Forests. SustainE, 1(2), 1-18.

Ali, S.S.M., Mokif, L.A., & Abdulhusain, N.A. (2025). Floating treatment wetland for decontamination of crystal violet dye from simulated industrial wastewater. Journal of Applied Water Engineering and Research, 13(2), 117-127.

Alzain, H., Kalimugogo, V., Hussein, K., & Karkadan, M. (2023). A review of environmental impact of azo dyes. International Journal of Research and Review, 10(6), 673-689.

Amasa, W., Leta, S., & Gnaro, M.A. (2025). Dye and chemical oxygen demand removal from textile wastewater using a scoria-based horizontal subsurface flow constructed wetland planted with Chrysopogon zizanioides. Results in Engineering, 107845.

Anastasi, A., Tigini, V., & Varese, G.C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In Soil Biology (Vol. 32, pp. 29-49). Springer, Berlin, Heidelberg.

Asses, N., Ayed, L., Hkiri, N., & Hamdi, M. (2018). Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. BioMed Research International, 2018(1), 3049686.

Benkhaya, S., M'rabet, S., & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271.

Carmen, Z., & Daniela, S. (2012). Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview (Vol. 3, pp. 55-86). Rijeka: IntechOpen.

Chaurasia, P.K., Bharati, S.L., Sharma, N., Kumar, J., & Sivalingam, A.M. (2025). Degradation of dyes by fungi: An overview on recent updates. The Microbe, 6, 100232.

Chequer, F.M.D., de Oliveira, G.A.R., Ferraz, E.R.A., Cardoso, J.C., & Zanoni, M.V.B. (2013). Textile dyes: Dyeing process and environmental impact. In M. Günay (Ed.), Eco- Friendly Textile Dyeing and Finishing (pp. 151-176). InTechOpen.

Chung, K. T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261.

Das, A. R., Saha, A. K., Joshi, S. R., and Das, P. (2017). Wild edible macrofungi consumed by ethnic tribes of Tripura in Northeast India with special reference to antibacterial activity of Pleurotus djamor (Rumph. ex Fr.) Boedijn. International Food Research Journal, 24(2): 834–838.

Foght J, April T, Biggar K, Aislabie J. (2001). Bioremediation of DDT-contaminated soils: a review. Bioremediation Journal, 5, 225-246.

Ghzal, Q., Javed, T., Zghair, A.N., Haider, M.N., Abed, M.J., Jasim, L.S., & Iftikhar, R. (2025). Sustainable dye wastewater treatment: A review of effective strategies and future directions. Physical Chemistry Research, 13(3), 479-509.

Gebreselema, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Investigation of antioxidant and antimicrobial activities of different extracts of Auricularia and Termitomyces species of mushrooms. Scientific World Journal, 2019, Article 7357048. https://doi.org/10.1155/2019/7357048

Glamoclija, J. & Sokovic, M. (2017). Fungi a source with huge potential for mushroom pharmaceuticals. Lekovite Sirovine, no. 37, pp. 52–57.

Hammel, K.E, Gai, W.Z., Green, B., & Moen, M.A. (1992). Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(6):1832-1838.

Heinfling, A., Bergbauer, M., & Szewzyk, U. (1997). Biodegradation of azo and phthalocyanine dyes by Trametes versicolour and Bjerkandera adusta. Applied Microbiology and Biotechnology, 48(2): 261-266.

Herath, I. S., Udayanga, D., Jayasanka, D.J., & Hewawasam, C. (2024). Textile dye decolorization by white rot fungi–A review. Bioresource Technology Reports, 25, 101687.

Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351-366.

Ishaq, S., Jabeen, G., Arshad, M., Kanwal, Z., Un Nisa, F., Zahra, R., ... & Manzoor, F. (2023). Heavy metal toxicity arising from the industrial effluents repercussions on oxidative stress, liver enzymes and antioxidant activity in brain homogenates of Oreochromis niloticus. Scientific Reports, 13(1), 19936.

Jackson, K.M. & Gomathi, V. (2021). Effect of Termitomyces sp. on decolorization and degradation of congo red (CR). Biological Forum-An International Journal, 13(2):374- 380.

Jadhav, J. P, Kalyani D. C, Telke A. A., Phugare S.S., & Govindwar S. P. (2010). Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresource Technology, 101 (1),165– 173. doi: 10.1016/j.biortech.2009.08.027

Jamal, M., Awadasseid, A., & Su, X. (2022). Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: A critical review. Biotechnology Letters, 44(9), 1011-1025.

Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 4(1), 22- 26.

Khan, R., Bhawana, P., & Fulekar, M.H. (2013). Microbial decolorization and degradation of

synthetic dyes: a review. Reviews in Environmental Science and Biotechnology, 12(1): 75-97.

Khan, A.A., Gul, J., Naqvi, S.R., Ali, I., Farooq, W., Liaqat, R., ... & Juchelková, D. (2022). Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere, 306, 135565.

Kitamura, R.S.A., Vicentini, M., Bitencourt, V., Vicari, T., Motta, W., Brito, J.C.M., ... & Gomes, M.P. (2023). Salvinia molesta phytoremediation capacity as a nature-based solution to prevent harmful effects and accumulation of ciprofloxacin in Neotropical catfish. Environmental Science and Pollution Research, 30(14), 41848-41863.

Kumar, C.G., Mongolla, P., Basha, A., Joseph, J., Sarma, V.U.M., & Kamal, A. (2011). Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India. Journal of Microbiology and Biotechnology, 21(3), 267-273.

Kumari, S., & Naraian, R. (2016). Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology. Journal of Environmental Management, 180, 172-179.

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms.

Biotechnology Research and Innovation, 3(2), 275-290.

Llanaj, X., Törős, G., Hajdú, P., Abdalla, N., El-Ramady, H., Kiss, A., Solberg, S. Ø., & Prokisch, J. (2023). Biotechnological applications of mushrooms under the water- energy-food Nexus: crucial aspects and prospects from farm to pharmacy. Foods (Basel, Switzerland), 12(14), 2671.

Makonde, H.M., Boga, H.I., Osiemo, Z., Mwirichia, R., & Stielow, J.B. (2013). Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods. PloS One, 8(2), e56464.

Maulik, S.R., Chakraborty, D., Mohanty, M., & Debnath, C. (2022). Vat dye and its evolution in dyeing. Textile Dyes and Pigments: A Green Chemistry Approach, 87-105.

Murugesan, K., Dhamija, A., Nam, I.H., Kim, Y. M., & Chang, Y. S. (2007). Decolourization of reactive black 5 by laccase: optimization by response surface methodology. Dyes and Pigments, 75(1), 176-184.

Nout, M.J.R., & Aidoo, K.E. (2002). Asian fungal fermented food. In H.D. Osiewacz (Ed.), Industrial Applications (pp. 23-47). Springer, Berlin, Heidelberg.

Paszczynski, A. & Crawford, R.L. (1991). Degradation of azo compounds by ligninase from

Phanerocheate chrysosporium: involvement of veratry alcohol. Biochemical and Biophysical Research Communications, 178: 1056-1063.

Periyasamy, A.P. (2024). Recent advances in the remediation of textile-dye-containing wastewater: prioritizing human health and sustainable wastewater treatment. Sustainability, 16(2), 495.

Podgornik, H., Grgic, I., & Perdih, A. (1999). Decolorization rate of dyes using lignin peroxidases of Phanerochaete chrysosporium. Chemosphere, 38: 1353-1359.

Pointing, S.B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57(1-2), 20-33.

Poulsen, M., Hu, H., Li, C., Chen, Z., Xu, L., Otani, S., ... & Zhang, G. (2014). Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences, 111(40), 14500-14505.

Prathima, G. & Vidya P. K. (2023). Environmental bioremediation of DDT- contaminated soil by using the mushroom extract of L. Edodes. Current Trends in Biotechnology and Pharmacy, 17(1), 603-608.

Pratiwi, D., Indrianingsih, A. W., & Darsih, C. (2017, December). Decolorization and degradation of batik dye effluent using Ganoderma lucidum. In IOP Conference Series: Earth and Environmental Science (Vol. 101, No. 1, p. 012034). IOP Publishing.

Pundir, A., Thakur, M. S., Prakash, S., Kumari, N., Sharma, N., Parameswari, E., ... & Kumar, M. (2024). Fungi as versatile biocatalytic tool for treatment of textile wastewater effluents. Environmental Sciences Europe, 36(1), 185.

Ramamurthy, K., Priya, P. S., Murugan, R., & Arockiaraj, J. (2024). Hues of risk: investigating genotoxicity and environmental impacts of azo textile dyes. Environmental wastewater. Chemosphere, 306, 135565.

Rhodes, C.J. (2014). Mycoremediation (bioremediation with fungi)–growing mushrooms to clean the earth. Chemical Speciation & Bioavailability, 26(3), 196-198.

Saidon, N. B., Szabó, R., Budai, P., & Lehel, J. (2024). Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environmental Pollution, 340, 122815.

Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138-157.

Schalk, F., Gostinčar, C., Kreuzenbeck, N. B., Conlon, B. H., Sommerwerk, E., Rabe, P., ... & Beemelmanns, C. (2021). The termite fungal cultivar Termitomyces combines diverse enzymes and oxidative reactions for plant biomass conversion. American Society for Microbiology, 12(3), 10-1128.

Sharma, K. P., Ahmad, S., & Flörke, M. (2000). Effects of wastewater irrigation on heavy metal accumulation in soil and plants. In Agriculture and Hydrology Applications of Remote Sensing (Vol. 4171, pp. 250-257). International Society for Optics and Photonics.

Singh, L. (2017). Biodegradation of synthetic dyes: a mycoremediation approach for degradation/decolourization of textile dyes and effluents. Journal of Applied Biotechnology and Bioengineering, 3(5), 430-435.

Singh, H. (2006). Mycoremediation: Fungal Bioremediation. Hoboken, NJ: John Wiley & Sons.

Singh, V. P., Singh, L. O. K. E. N. D. R. A., Singh, I. S. H. W. A. R., & Kumar, R. A. J. E. S. H. (2006). Microbial degradation of hazardous dyes. Current Concepts in Botany, 273-285 .

Stamets, P. (2005). Mycelium Running: How Mushrooms Can Help Save the World. Berkeley, CA: Ten Speed Press.

Sudarshan, S., Harikrishnan, S., RathiBhuvaneswari, G., Alamelu, V., Aanand, S., Rajasekar, A., & Govarthanan, M. (2023). Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 134(2), lxac064.

Tharu, A. K., Paudel, M. R., Joshi, A. P., Bhandari, L., & Aryal, H. P. (2022). Screening of secondary metabolites and antioxidant activity of wild edible termite mushroom. Pharmacognosy Journal, 14(2), 301–307. https://doi.org/10.5530/pj.2022.14.38

Tibuhwa, D. D. (2014). A comparative study of Termitomyces microcarpus from Tanzania and other nations: Systematics and local knowledge. Current Research in Environmental & Applied Mycology, 4(2), 121-139.

Torres-Farradá, G., Thijs, S., Rineau, F., Guerra, G., & Vangronsveld, J. (2024). White rot fungi as tools for the bioremediation of xenobiotics: A Review. Journal of Fungi (Basel, Switzerland), 10(3), 167.

Wang, X., Yao, B., & Su, X. (2018). Linking enzymatic oxidative degradation of lignin to organics detoxification. International Journal of Molecular Sciences, 19(11), 3373.

Yang, G., Ahmad, F., Liang, S., Fouad, H., Guo, M., Gaal, H. A., & Mo, J. (2020). Termitomyces heimii associated with fungus-growing termite produces volatile organic compounds (VOCs) and lignocellulose-degrading enzymes. Applied Biochemistry and Biotechnology, 192(4), 1270-1283.

Yi, W., Zhou, J., Xiao, Q., Zhong, W., & Xu, X. (2025). Arginine-enhanced Termitomyces mycelia: Improvement in growth and lignocellulose degradation capabilities. Foods, 14(3), 361.

Published

11-02-2026

How to Cite

Binti Abdullah, E., Muhamed Musaab, Amin, F. ., Ahmad Aqil Zamri, Yasir, I. ., & Asita Elengoe. (2026). Mycoremediation of Textile Dye Effluents Using Termitomyces heimii Mushroom: A Sustainable Biocatalyst Approach. International Journal of Biotechnology and Biomedicine (IJBB), 2(4), 33-48. https://doi.org/10.31674/ijbb.2025.v02i04.004

Metrics