Contemporary Approaches to the Detection of Foodborne Pathogens.
DOI:
https://doi.org/10.31674/ijbb.2025.v02i04.002Abstract
Even though food preservation and safety methods have improved a lot, many disease outbreaks caused by foodborne pathogens like bacteria, fungi, and viruses still happen around the world. This shows that these pathogens are still a serious threat to public health.
Although there are many reviews on methods for detecting foodborne pathogens, most of them focus mainly on bacteria, even though viruses and other pathogens are equally important .Ready to eat (R.T.E) foods always come in handy and is the surest way in which pathogens in foods are been transmitted. Regardless of the hygiene measures in preparation of these foods and the innovations in food preservation techniques and food safety, there is still an increasing foodborne outbreak that has been linked to R.T.E foods. In recent times, there are lots of research on food borne outbreaks most research focuses on bacteria as the primary source of contaminant with little or no focus on other types of microorganisms like fungi and viruses. Hence, this review will focus on some pathogenic bacteria, fungi and viruses that has been linked to foodborne outbreak. This review will shed more light on how culture-based methods, application of immunoassay methods and nucleic-acid based PCR are useful in the detection of foodborne outbreak. It provides substantial information on how different methods are used in the detection of foodborne diseases.
Keywords:
Foodborne, Pathogens, Diseases, PCR, mmunoassays, Culture-Based, NGSReferences
Adebisi, N.K., Abg.Ghani, A., and Tang, J.Y.H. (2023). Detection, Isolation, and Antibiogram of Vibrio parahaemolyticus from keropok lekor in Kuala Terengganu, Malaysia. Journal of Agrobiotechnology, 14(1), 32-43
Agriopoulou, S., Stamatelopoulou, E., & Varzakas, T. (2020). Advances in analysis and detection of major mycotoxins in foods. Foods, 9, 518. https://doi.org/10.3390/foods9040518
Altayb, H. N., Badri, R. M., Chaieb, K., & Moglad, E. (2023). Detection and characterization of the most common foodborne pathogens by using multiplex PCR procedure. Saudi Journal of Biological Sciences, 1–14.
Armstrong, A. E., Rossoff, J., Hollemon, D., Hong, D. K., Muller, W. J., & Chaudhury, S. (2019). Cell-free DNA next-generation sequencing successfully detects infectious pathogens in pediatric oncology and hematopoietic stem cell transplant patients at risk for invasive fungal disease. Pediatric Blood & Cancer, 66, e27734. https://doi.org/10.1002/pbc.27734
Authority, E. F. S. (2021). The European Union One Health 2020 Zoonoses Report. EFSA Journal.
Bai, X., Wang, Z., Li, W., Xiao, F., Huang, J., Xu, Q., & Xu, H. (2022). Rapid and accurate detection for Listeria monocytogenes in milk using ampicillin-mediated magnetic separation coupled with quantitative real- time PCR. Microchemical Journal, 183, 108063. https://doi.org/10.1016/j.microc.2022.108063
Bartsch, C., Höper, D., Mäde, D., & Johne, R. (2018). Analysis of frozen strawberries involved in a large norovirus gastroenteritis outbreak using next-generation sequencing and digital PCR. Food Microbiology, 76, 390– 395. https://doi.org/10.1016/j.fm.2018.06.016
Beley, M. A. J., Teves, F. G., Reina, M., & Madamba, S. (2013). Isolation of fungal species and detection of aflatoxin from soy milk products using ELISA method. International Research Journal of Biological Sciences, 2(6), 45–48.
Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3, 529.
Biswas, S., & Rolain, J.-M. (2013). Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. Journal of Microbiological Methods, 92, 14–24.
Bosch, A., Sánchez, G., Abbaszadegan, M., Carducci, A., Guix, S., Le Guyader, F. S., Netshikweta, R., Pintó, R. M., Van Der Poel, W. H., & Rutjes, S. (2011). Analytical methods for virus detection in water and food. Food Analytical Methods, 4, 4–12.
Chen, K., Ma, B., Li, J., Chen, E., Xu, Y., Yu, X., Sun, C., & Zhang, M. (2021). A rapid and sensitive europium nanoparticle-based lateral flow immunoassay combined with recombinase polymerase amplification for simultaneous detection of three food-borne pathogens. International Journal of Environmental Research and Public Health, 18, 4574.
Cheng, V. C., Chan, J. F., Ngan, A. H., To, K. K., Leung, S., Tsoi, H., Yam, W., Tai, J. W., Wong, S. S., & Tse, H. (2009). Outbreak of intestinal infection due to Rhizopus microsporus. Journal of Clinical Microbiology, 47, 2834–2843.
Coudray-Meunier, C., Fraisse, A., Martin-Latil, S., Guillier, L., & Perelle, S. (2013). Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiology, 13, 216. https://doi.org/10.1186/1471-2180-13-216
Da Silva, N., Taniwaki, M. H., Junqueira, V. C., Silveira, N., Okazaki, M. M., & Gomes, R. A. R. (2018). Microbiological examination methods of food and water: A laboratory manual. CRC Press.
Dai, M., Yan, N., Huang, Y., Zhao, L., & Liao, M. (2022). Survivability of highly pathogenic avian influenza virus on raw chicken meat in different environmental conditions. The Lancet Microbe, 3, e92.
Elbehiry, A., Marzouk, E., Hamada, M., Al-Dubaib, M., Alyamani, E., Moussa, I. M., AlRowaidhan, A., & Hemeg, H. A. (2017). Application of MALDI-TOF MS fingerprinting as a quick tool for identification and clustering of foodborne pathogens isolated from food products. New Microbiologica, 40, 269–278.
Foddai, A. C., & Grant, I. R. (2020). Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Applied Microbiology and Biotechnology, 104, 4281–4288.
Gill, A. (2017). The importance of bacterial culture to food microbiology in the age of genomics. Frontiers in Microbiology, 8, 777.
Hassan, F. F., Al-Jibouri, M. H., & Hashim, A. K. J. (2014). Isolation and identification of fungal propagation in stored maize and detection of aflatoxin B1 using TLC and ELISA technique. Iraqi Journal of Science, 55, 634–642.
Hawksworth, D. L. (2001). The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycological Research, 105, 1422–1432.
Itarte, M., Martínez-Puchol, S., Forés, E., Hundesa, A., Timoneda, N., Bofill-Mas, S., Girones, R., & Rusiñol, M. (2021). NGS techniques reveal a high diversity of RNA viral pathogens and papillomaviruses in fresh produce and irrigation water. Foods, 10(8), 1820. https://doi.org/10.3390/foods10081820
Iulietto, M. F., Sechi, P., Borgogni, E., & Cenci-Goga, B. T. (2015). Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Italian Journal of Animal Science, 14, 4011.
Jagadeesan, B., Gerner-Smidt, P., Allard, M. W., Leuillet, S., Winkler, A., Xiao, Y., Chaffron, S., Van Der Vossen, J., Tang, S., & Katase, M. (2019). The use of next-generation sequencing for improving food safety: Translation into practice. Food Microbiology, 79, 96–115. https://doi.org/10.1016/j.fm.2018.11.005
Jiang, S., Chen, Y., Han, S., Lv, L., & Li, L. (2022). Next-generation sequencing applications for the study of fungal pathogens. Microorganisms, 10(9), 1882. https://doi.org/10.3390/microorganisms10091882
Khan, J. A., Rathore, R. S., Abulreesh, H. H., Qais, F. A., & Ahmad, I. (2018). Cultural and immunological methods for the detection of Campylobacter jejuni: A review. Indian Journal of Biotechnology and Pharmaceutical Research, 6, 4–10.
Kim, D. M., Chung, S. H., & Chun, H. S. (2011). Multiplex PCR assay for the detection of aflatoxigenic and non- aflatoxigenic fungi in meju, a Korean fermented soybean food starter. Food Microbiology, 28(7), 1402–1408. https://doi.org/10.1016/j.fm.2011.02.004
Kim, H., Chung, D.-R., & Kang, M. (2019). A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst, 144(7), 2460–2466. https://doi.org/10.1039/C8AN02415H
Kirk, M., Glass, K., Ford, L., Brown, K., & Hall, G. (2014). Foodborne illness in Australia: Annual incidence circa 2010. Canberra: Australian Government Department of Health, 20, 1857–1864.
Kumar, B. K., Raghunath, P., Devegowda, D., Deekshit, V. K., Venugopal, M. N., & Karunasagar, I. (2011). Development of monoclonal antibody-based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. International Journal of Food Microbiology, 145, 244–249.
Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G., & Lee, L.-H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 770.
Lee, N., Kwon, K. Y., Oh, S. K., Chang, H.-J., Chun, H. S., & Choi, S.-W. (2014). A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathogens and Disease, 11(8), 574–580. https://doi.org/10.1089/fpd.2013.1687
Lee, S. C., Billmyre, R. B., Li, A., Carson, S., Sykes, S. M., Huh, E. Y., Mieczkowski, P., Ko, D. C., Cuomo, C. A., & Heitman, J. (2014). Analysis of a food-borne fungal pathogen outbreak: Virulence and genome of a Mucor circinelloides isolate from yogurt. mBio, 5(4), e01312–14.
Leonard, S. R., Mammel, M. K., Lacher, D. W., & Elkins, C. A. (2015). Application of metagenomic sequencing to food safety: Detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Applied and Environmental Microbiology, 81(23), 8183–8191. https://doi.org/10.1128/AEM.02626-15
Lianou, A., Panagou, E. Z., & Nychas, G.-J. E. (2023). Meat safety—Foodborne pathogens and other biological issues. In Lawrie’s Meat Science (pp. 549–590). Elsevier.
Luchi, N., Ioos, R., & Santini, A. (2020). Fast and reliable molecular methods to detect fungal pathogens in woody plants. Applied Microbiology and Biotechnology, 104(6), 2453–2468. https://doi.org/10.1007/s00253-020-10353-7
Mancini, V., Murolo, S., & Romanazzi, G. (2016). Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathology, 65(5), 691–703. https://doi.org/10.1111/ppa.12445
Marti, E., & Barardi, C. R. M. (2016). Detection of human adenoviruses in organic fresh produce using molecular and cell culture-based methods. International Journal of Food Microbiology, 230, 40–44.
Martinović, T., Andjelković, U., Gajdošik, M. Š., Rešetar, D., & Josić, D. (2016). Foodborne pathogens and their toxins. Journal of Proteomics, 147, 226–235.
Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M., & Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.
Mira Miralles, M., Maestre-Carballa, L., Lluesma-Gomez, M., & Martinez-Garcia, M. (2019). High-throughput 16S rRNA sequencing to assess potentially active bacteria and foodborne pathogens: A case example in ready-to-eat food. Foods, 8(11), 480. https://doi.org/10.3390/foods8110480
Miranda, R. C., & Schaffner, D. W. (2019). Virus risk in the food supply chain. Current Opinion in Food Science, 30, 43–48.
Moran-Gilad, J. (2017). Whole genome sequencing (WGS) for food-borne pathogen surveillance and control—taking the pulse. Eurosurveillance, 22(23), 30547. https://doi.org/10.2807/1560- 7917.ES.2017.22.23.30547
Muhamad Rizal, N. S., Neoh, H.-M., Ramli, R., Periyasamy, P. R. A/L K., Hanafiah, A., Abdul Samat, M. N., Tan, T. L., Wong, K. K., Nathan, S., & Chieng, S. (2020). Advantages and limitations of 16S rRNA next- generation sequencing for pathogen identification in the diagnostic microbiology laboratory: Perspectives from a middle-income country. Diagnostics, 10(11), 816. https://doi.org/10.3390/diagnostics10110816
Nyachuba, D. G. (2010). Foodborne illness: Is it on the rise? Nutrition Reviews, 68(5), 257–269. https://doi.org/10.1111/j.1753-4887.2010.00286.
Oluwaseun, A. C., Phazang, P., & Sarin, N. B. (2018). Biosensors: A fast-growing technology for pathogen detection in agriculture and food sector. In Biosensing technologies for the detection of pathogens—A prospective way for rapid analysis (37–52). INTECH.
Omori, A. M., Ono, E. Y. S., Bordini, J. G., Hirozawa, M. T., Fungaro, M. H. P., & Ono, M. A. (2018). Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene. Food Microbiology, 73, 160–167.
Oplatowska-Stachowiak, M., Sajic, N., Xu, Y., Haughey, S. A., Mooney, M. H., Gong, Y. Y., Verheijen, R., & Elliott, C. T. (2016). Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients. Food Control, 63, 264–271.
Ounleye, A. O., & Olaiya, G. A. (2015). Isolation, identification and mycotoxin production of some mycoflora of dried stockfish (Gadus morhua). Academic Journal of Science, 4, 345–363.
Park, D. G., Ha, E. S., Kang, B., Choi, I., Kwak, J. E., Choi, J., Park, J., Lee, W., Kim, S. H., & Kim, S. H. (2023). Development and evaluation of a next-generation sequencing panel for the multiple detection and identification of pathogens in fermented foods. Journal of Microbiology and Biotechnology, 33, 83–95.
Paterson, R. R. M., & Lima, N. (2017). Filamentous fungal human pathogens from food, emphasising Aspergillus, Fusarium and Mucor. Microorganisms, 5, 44.
Patil-Joshi, A., Rangaswamy, B., & Apte-Deshpande, A. (2021). PCR-based method development, validation and application for microbial detection. Journal of Genetic Engineering and Biotechnology, 19, 1–10.
Pexara, A., & Govaris, A. (2020). Foodborne viruses and innovative non-thermal food-processing technologies. Foods, 9, 1520.
Priyanka, B., Patil, R. K., & Dwarakanath, S. (2016). A review on detection methods used for foodborne pathogens. Indian Journal of Medical Research, 144, 327.
Quthama, A.-Z., Digut, A. C. F., Dopcea, G., & Matei, F. (2022). Conventional versus modern techniques used for the detection of pathogens in food matrices: A review. Scientific Bulletin. Series F. Biotechnologies, 26, 79–88.
Rahman, H. U., Yue, X., Ren, X., Zhang, W., Zhang, Q., & Li, P. (2020). Multiplex PCR assay to detect Aspergillus, Penicillium and Fusarium species simultaneously. Food Additives & Contaminants: Part A, 37(11), 1939–1950.
Ribot, E. M., & Hise, K. B. (2016). Future challenges for tracking foodborne diseases. EMBO Reports, 17, 1499–1505.
Rychert, J. (2019). Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. Journal of Infectious Epidemiology, 2, 4.
Sánchez, G., & Bosch, A. (2016). Survival of enteric viruses in the environment and food. In Viruses in Foods (pp. 367–392). Springer.
Saravanan, A., Kumar, P. S., Hemavathy, R., Jeevanantham, S., Kamalesh, R., Sneha, S., & Yaashikaa, P. (2021). Methods of detection of food-borne pathogens: A review. Environmental Chemistry Letters, 19, 189– 207.
Saucier, L. (2016). Microbial spoilage, quality and safety within the context of meat sustainability. Meat Science, 120, 78–84.
Sexton, D. J., Kordalewska, M., Bentz, M. L., Welsh, R. M., Perlin, D. S., & Litvintseva, A. P. (2018). Direct detection of emergent fungal pathogen Candida auris in clinical skin swabs by SYBR green-based quantitative PCR assay. Journal of Clinical Microbiology, 56(1), e01337-18.
Singh, J., Birbian, N., Sinha, S., & Goswami, A. (2014). A critical review on PCR, its types and applications. International Journal of Advanced Research in Biological Sciences, 1(7), 65–80.
Su, W., Liang, D., & Tan, M. (2021). Nucleic acid-based detection for foodborne viruses utilizing microfluidic systems. Trends in Food Science & Technology, 113, 97–109.
Tietjen, M., & Fung, D. Y. (1995). Salmonellae and food safety. Critical Reviews in Microbiology, 21, 53–83.
Tu, Z., Chen, Q., Li, Y., Xiong, Y., Xu, Y., Hu, N., & Tao, Y. (2016). Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Analytical Biochemistry, 493, 1–7.
Vergidis, P., Moore, C. B., Novak-Frazer, L., Rautemaa-Richardson, R., Walker, A., Denning, D. W., & Richardson, M. D. (2020). High-volume culture and quantitative real-time PCR for the detection of Aspergillus in sputum. Clinical Microbiology and Infection, 26(7), 935–940.
Wagner, K., Springer, B., Pires, V., & Keller, P. M. (2018). Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture. Scientific Reports, 8(1), 6964. https://doi.org/10.1038/s41598-018-25217-9
Wu, J.-L., Tseng, W.-P., Lin, C.-H., Lee, T.-F., Chung, M.-Y., Huang, C.-H., Chen, S.-Y., Hsueh, P.-R., & Chen, S.-C. (2020). Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. Journal of Infection, 81, 435–442.
Wu, L., Mitake, H., Kiso, M., Ito, M., Iwatsuki-Hirimoto, K., Yamayoshi, S., Lopes, T. J., Feng, H., Sumiyoshi, R., & Shibata, A. (2020). Characterization of H7N9 avian influenza viruses isolated from duck meat products. Transboundary and Emerging Diseases, 67, 792–798.
Xiao, L., Zhang, L., & Wang, H. H. (2012). Critical issues in detecting viable Listeria monocytogenes cells by real-time reverse transcriptase PCR. Journal of Food Protection, 75(3), 512–517.
Yeargin, T., & Gibson, K. (2019). Key characteristics of foods with an elevated risk for viral enteropathogen contamination. Journal of Applied Microbiology, 126, 996–1010.
Zhang, J., Li, X., Wang, X., Ye, H., Li, B., Chen, Y., Chen, J., Zhang, T., Qiu, Z., & Li, H. (2021). Genomic evolution, transmission dynamics, and pathogenicity of avian influenza A (H5N8) viruses emerging in China, 2020. Virus Evolution, 7, veab046.
Zhao, X., Lin, C.-W., Wang, J., & Oh, D. H. (2014). Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology, 24, 297–312.


