

Effect of Health Education on Parents' Knowledge and Practices in Caring for Children with Myopia

Amal Yousef Abdelwahed^{1*}, Fadiyah Alshwail¹, Olfat Gushgari¹, Ayiat Allah Wagdy Farag², Maha Hosny Mohamed Elshater³, Lamiaa Moustafa Elbosaty⁴

¹Department of Public Health, College of Health Sciences, Saudi Electronic University, 31411 Dammam, Saudi Arabia

²Department of Community Health Nursing, Faculty of Nursing, Modern University for Technology and Information, Cairo Governorate 4411601, Egypt

³Department of Pediatric Nursing, Faculty of Nursing, Alexandria University, Alexandria Governorate 5432042, Egypt

⁴Department of Community Health Nursing, Emergency Hospital, Mansoura University, Dakahlia Governorate 7650030, Egypt

*Corresponding Author's Email: a.elnabasy@seu.edu.sa

ABSTRACT

Background: Myopia is a prevalent visual impairment that necessitates appropriate treatment and preventative measures, particularly for children. The current study aimed to determine the effect of health education on parents' knowledge and practices regarding the care of their children with myopia.

Methods: A quasi-experimental research design was used for this study. This study was conducted at the ophthalmology clinics at Sohag University Hospitals. A convenience sample of all (200) parents and their children with myopia was enrolled in the study over a period of six months from the previously mentioned setting. Two tools were used for data collection. The Tool I was a structured interview questionnaire (used for pre-test and post-test data). It consisted of four parts: Part 1: Parents' personal data. Part 2: Children's personal data. Part 3: Children's medical history. Part 4: Parents' knowledge regarding myopia. Tool II assessed parents' reported practices regarding myopia, also administered as a pre-test and post-test. **Results:** The study demonstrated that health education had a significant effect on improving participants' mean knowledge and practice scores. Notable improvements were observed in post-intervention. A statistically significant correlation was found between parents' total knowledge and practices regarding the care of their children with myopia, both pre- and post-health education.

Conclusion: Health education had a positive effect on improving parents' knowledge and practices regarding the care of their children with myopia. **Recommendation:** Continuous health education programs for parents must be recommended to improve knowledge and practices about myopia management. The study should be replicated to generalize the results to a wider population.

Keywords: Children and Myopia; Health Education; Parents' Knowledge; Practices

INTRODUCTION

Myopia is a significant contributor to vision impairment that has seen a rise in global prevalence, with projections indicating it will impact nearly 5 billion individuals by 2050 (Grzybowski *et al.*, 2020). According to reports, 53.6% of children and adolescents have myopia. Children with early-onset myopia (those under seven years of age) are more likely to acquire high myopia (Andrade *et al.*, 2020). The consequences of high myopia can be severe for individuals, families, and society as a whole. These complications include cataracts, chorioretinal atrophy, macular holes, myopic foveoschisis, and changes in the optic nerve head. These conditions can cause irreversible damage to retinal photoreceptors and even central vision loss (Holden *et al.*,

Received: September 1, 2025 Received in revised form: December 7, 2025 Accepted: December 10, 2025

2025).

Children who have myopia may experience decreased productivity and a lower quality of life in relation to their vision. Severe myopia is associated with a higher chance of developing other eye conditions that can cause blindness and visual impairment. According to Leo (2025), childhood myopia is a worldwide public health concern that requires immediate action to stop its progression and prevent its onset. The listed risk factors were found, such as female gender, limited outdoor activity, parental myopia, advancing age, length of time spent near work or study, urban living conditions, high population density, and smaller living spaces (Chen *et al.*, 2023). Myopia causes are hereditary factors and environmental factors (the main cause of recent increases); environmental influences include vision-related behaviors such as sleep, screen time, outdoor activities, and eye usage. Prevention and control, including controlling environmental factors, can help prevent and manage myopia (Goldschmidt & Jacobsen, 2014).

Key strategies for myopia management included Enhancing parental awareness of myopia prevention is crucial; improving public education can raise parents' awareness, and health education can encourage children to adopt healthy vision behaviors (Ang *et al.*, 2025). Parents play a vital role in influencing lifestyle choices, promoting behavioral changes, and managing environmental exposures. Educating parents to raise awareness by pediatric nursing staff can empower them to support their children's eye health and prevent myopia progression (Morgan, 2012).

In addition to encouraging healthy habits like regular eye breaks and proper lighting, nursing education for parents with myopia should fill in information gaps, especially regarding the causes of myopia and practical preventative techniques like spending more time outside and avoiding close work. To increase parental involvement in treating childhood myopia, interventions should be simple, easy to understand, and focused on closing the knowledge gap between good attitudes, consistent practices, and family engagement. Parental roles also included understanding of myopia, readiness to adopt interventions, and family-focused therapies that can improve parental attitudes and practices, benefiting children with myopia (Morgan *et al.*, 2018).

Nurses play a vital role in enhancing parents' understanding and care for children with myopia by increasing awareness: Educating parents about myopia, its causes, symptoms, and treatment options, and promoting proper eye care practices: Teaching effective strategies for managing myopia, including regular eye exams, proper use of corrective lenses, and healthy eye habits, and encouraging behavioral changes: Helping parents adopt habits that slow down myopia progression, such as promoting outdoor activities and limiting screen time, and creating a supportive environment: Empowering parents to foster an environment that supports their child's eye health and overall well-being through nursing education (Zhan *et al.*, 2025). Therefore, this study sought to determine the effect of health education on parents' knowledge and practices in caring for children with myopia.

Significance of the Study

Myopia, or nearsightedness, is a growing concern globally, including in Egypt. In Egypt, myopia prevalence tends to be higher in older children (12-18 years) compared to younger ones (5-11 years), with rates of 5.8% and 3.7%, respectively. Myopia can lead to increased risks of myopic macular degeneration, retinal detachment, cataracts and open-angle glaucoma. There's a significant awareness gap among parents regarding myopia, its risks, and management options, as 77% of parents are unaware of the increased risk of eye health conditions associated with high myopia, 88% are not aware of myopia management treatments available to reduce the risk of myopia progression, and limited knowledge about myopia and its complications can hinder effective management and prevention strategies (Chua *et al.*, 2016). Therefore, this study sought to determine the effect of health education on parents' knowledge and practices in caring for children with myopia.

Objectives

To determine the effect of health education on parents' knowledge and practice of caring for children with myopia

Research Hypothesis

H1: Parents' knowledge mean scores regarding myopia will be improved post-health education

implementation compared to pre-implementation.

H2: Parents' practice mean scores regarding myopia will be improved post-health education program implementation compared to pre-implementation.

METHODOLOGY

Research Design

A quasi-experimental research design was used in this study. This design is important to the nature of the study issue; subjects were observed pre- and post-manipulation. A one-group pre- and post-test research design was used to evaluate causal relationships between intervention and outcome. It is a method for assessing the effect of an intervention by comparing scores on a variable before and after an intervention (Thomas, 2024).

Setting

This study was conducted at the ophthalmology clinics at Sohag University Hospitals, Egypt.

Subjects

A convenience sample of 200 parents and their children with myopia were enrolled in the study within six months from the previously mentioned setting.

Tools for Data Collection

Data collection was conducted using the following tools:

Tool (I): Structured Interview Questionnaire

The questionnaire was developed by researchers based on a scientific review of literature (Chen *et al.*, 2023) and it consisted of four parts:

Part I: Parent-personal data: this part consists of four closed-ended questions, which include age, sex, educational level, and residence.

Part II: Children's personal data: this part consists of three closed-ended questions, which include age, gender, and educational level.

Part III: Children's medical history: this part consists of four closed-ended questions, which include duration of myopia, wearing glasses, contact lenses, and low-concentration atropine eye drops.

Part IV: Parents' knowledge regarding myopia: this part consists of 6 closed-ended questions, which include definition, causes, symptoms, types, prevention, and treatment. The knowledge dimension had six questions with a possible score range of 0–6 points, with 1 point awarded for each right response and 0 points for incorrect responses. Less than 60% of the overall knowledge score was considered unsatisfactory knowledge, whereas more than 60% of the total knowledge score was considered satisfactory knowledge.

Tool (II): Parents' reported practices regarding myopia: It was developed by researchers based on a scientific review of literature (Morgan *et al.*, 2012; Sherief *et al.*, 2023). This part consists of 05 closed-ended questions that include eye exercises, outdoor time and natural light exposure, limiting screen time and reducing eye strain, nutritional support for eye health, and proper eye care practices.

Five questions made up the practice dimension, with one point awarded for each right response and zero for incorrect responses, for a potential score range of 0–5. A practice was considered adequate if it accounted for more than 60% of the total practice score and inadequate if it accounted for less than 60%.

Preparatory Phase

A comprehensive review of existing literature was conducted to gather relevant knowledge and insights.

Validity and Reliability of Tools

The tools were evaluated for item relevance and content validity by a panel of five experts, including two specialists in pediatric nursing and community health nursing and one expert in pediatric ophthalmology. No

modifications were deemed necessary. Reliability of tools was measured by using appropriate statistical tests. Cronbach's alpha coefficients for knowledge and practices were shown to be 0.878 and 0.898, respectively. This reliability coefficient likely refers to all items in your knowledge and practices scales tested as one overall measure. A regression model determined which of these independent variables significantly predicted a larger improvement in knowledge and practice scores significantly predicted a larger improvement in knowledge and practice scores. Improvement Practices= $\beta_0 + \beta_1(\text{Age}) + \beta_2(\text{Gender}) + \beta_3(\text{Pre_Knowledge}) + \dots$

Pilot Study

A pilot study was conducted to test the clarity, reliability, and applicability of tools. To achieve that, the study was tested on 10% of the parents (20 parents). According to the results obtained from data analysis, for item correction, no modification was done to develop the final format under the guidance of supervisors. The pilot study was included in the total sample.

Fieldwork

Official approval to conduct the study was secured after outlining its objectives to the dean of Sohag University's faculty of nursing. The study's objectives were then explained, anonymity was ensured, and written consent was obtained by the studied parents. The six-month data collection period was from June 2023 to November 2023.

There were four major phases of the research

Assessment Phase

Each parent was interviewed prior to the health education that will be given by the nursing researcher to gather their characteristics, their children personal data, and their medical history using tool (I) part (1,2,3), and their knowledge and practice regarding myopia were evaluated using tool (I) part (4) and tool II.

Planning Phase

The objectives, priorities, and expected outcomes of the health education program were defined based on the findings from the previous phase. This phase aimed to address the practical needs and knowledge gaps of parents regarding the care of children with myopia.

Health Education Program for Parents

A comprehensive health education program was designed to improve parents' understanding and practices concerning myopia in children. The program consisted of five sessions—three practical and two theoretical. Topics covered included myopia's definition, symptoms, diagnosis, treatment, prevention, and complications. Practical sessions focused on training parents in nutritional support, eye care practices, eye exercises, and encouraging outdoor activities to help manage myopia.

Program Implementation Phase

Parents were divided into small groups (6-8 participants). Sessions were conducted 3 days a week, from 9 am to 1 pm. Various teaching methods and media were used, including lectures, discussions, visual aids, and handouts. Program goals were to improve parents' knowledge and practices regarding myopia, enhance parents' ability to care for children with myopia, and promote healthy vision habits and prevent myopia progression.

Evaluation Phase

The parents' knowledge and practices in caring for children with myopia were reassessed immediately after the education (post-test) and again one month later (follow-up) to determine the impact of health education on parents' knowledge and practices in caring for children with myopia.

Statistical Design

The data analysis involved organizing, coding, and formatting data for computer entry, utilizing SPSS version 22 for data analysis, and creating graphical representations using Excel. The analysis included a *t*-test

for comparing pretest and posttest data (mean \pm SD). *T*-tests are parametric tests that rely on several conditions regarding the nature and distribution of the data. Level of measurement: the dependent variable (knowledge and practices scores) must be measured on a continuous scale (interval or ratio level). This is generally met by total scores from questionnaires. Independence of observations: each participant's score should be independent of every other participant's score (except for the paired pre-test/post-test scores within the same individual). The sampling method used (convenience sample of 200 parents) should ideally ensure this independence. The Pearson correlation coefficient is used to assess the linear relationship between two continuous quantitative variables. Significance levels were $p < 0.05$: statistically significant and $p \leq 0.001$: highly significant.

The data interpretation is based on the significance thresholds provided:

The provided data snippets focus on specific results tables (frequencies, means, *t*-tests and ANOVA), the following describes the typical methods that would have been used by the researchers to ensure the validity of their parametric statistical tests (like the *t*-tests and *F*-tests reported in the tables).

Ethical Consideration

The researchers obtained ethical clearance from the Research Ethics Committee for the study protocol from the Faculty of Nursing, The Sohag University, Egypt, with reference number 166 on 6th June 2023.

The researcher clarified the objectives and aim of the study to parents and was assured of maintaining the anonymity and confidentiality of the subject data. Selected parents were informed that they are allowed to participate in the study and they have the right to withdraw from it at any time.

RESULTS

Table 1: Demographic Distribution of the Studied Parents (n=200)

Personal Data	Frequency (n)	Percentage (%)
Gender		
Male	40	20
Female	160	80
Age		
< 25 years	68	34
25 - \geq 36 years	132	66
Mean Duration \pm SD (Years)		24.8 \pm 5.6
Residence		
Rural	148	74
Urban	52	26
Educational level		
Illiterate	52	26
Secondary Education	128	64
University Education	20	10

SD = Standard Deviation

Table 1 reveals that 80% of the parents surveyed were female and 66% of them were above 25. Their average age was 24.8 ± 5.6 years. In terms of educational qualifications, 64% of the parents had completed a secondary education. Regarding their residence, 74% were living in rural areas.

Table 2: Demographic Distribution of the Studied Children (n=200)

Personal Data	Frequency (n)	Percentage (%)
Age		
Under 6 Years	68	34
Above 6 Years	132	66
Mean Duration \pm SD (Years)		8.6 \pm 3.7
Median		
IQR (Interquartile Range)		
Gender		
Boy	60	30
Girl	140	70
Educational level		
Nursery - School	80	40
Preparatory Education	120	60

SD = Standard Deviation

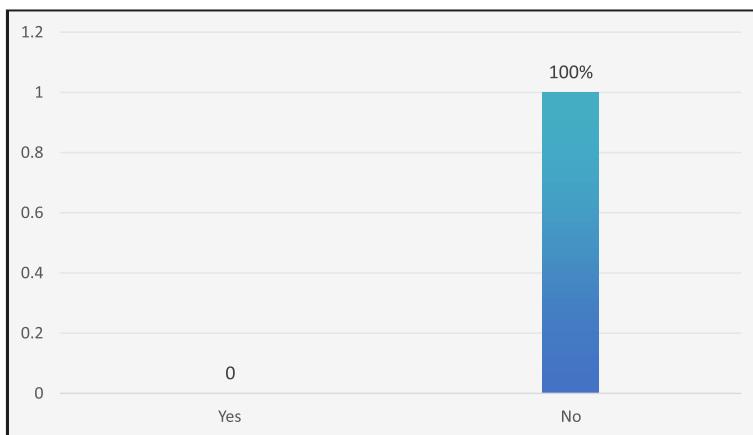

Table 2 shows that 66% of the studied children with myopia were above 6 years old, 70% of them were girls, and 60% of them were in preparatory education.

Table 3: Medical History of the Studied Children with Myopia (n=200)

Variable	Frequency (n)	Percentage (%)
Duration of Myopia (First Diagnosis)		
Less than 1 year	30	15
1–3 years	80	40
More than 3 years	70	35
Mean Duration \pm SD (Years) = 2.46 \pm 1.97		
Spectacle use		
Yes	150	75
No	50	25
Contact Lenses		
Yes	10	5
No	190	95

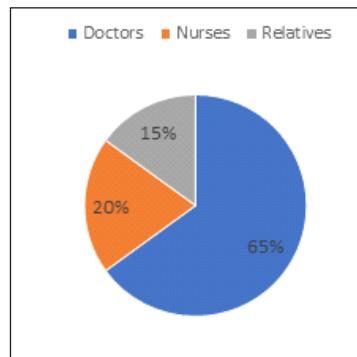

SD= Standard Deviation

Table 3 reveals that duration of myopic was less than 1 year among 40% of the studied children, 75% of them were wearing glasses, and 95% of them were not wearing contact lenses.

Figure 1: Studied Parent's Distribution Regarding Attendance Training Courses Regarding Myopia (n=200)

Figure 1 illustrates that none of the studied parents attended training courses regarding myopia.

Figure 2: Source of Knowledge among Parents Caring for Children with Myopia

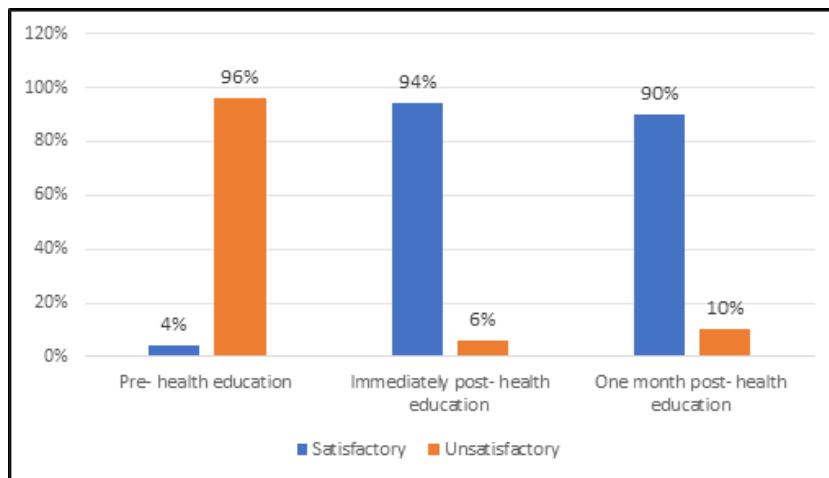

Figure 2 illustrates that the main source of knowledge among parents caring for children with myopia was doctors (65%).

Table 4: Differences Between Parents' Knowledge Regarding Myopia: Pre-Intervention, Immediately Post-Intervention, and One Month Post-Intervention (n=200)

Parents' Knowledge	Pre- Health Education		Immediately Post- Health Education		One Month of Post- Health Education		F	P-value
	No	%	No	%	No	%		
Definition								
Correct	48	24.0	200	100	200	100	68.5	<0.001**
Incorrect	152	76.0	0	0.0	0	0.0		
Symptoms								
Correct	52	26.0	200	100	200	100	75.6	<0.001**
Incorrect	148	74.0	0	0.0	0	0.0		
Diagnosis								
Correct	36	18.0	200	100	200	100	69.5	<0.001**
Incorrect	164	82.0	0	0.0	0	0.0		
Treatment								
Correct	60	30.0	200	100	200	100	88.4	<0.001**
Incorrect	140	70.0	0	0.0	0	0.0		
Prevention								
Correct	40	20.0	200	100	200	100	76.8	<0.001**
Incorrect	160	80.0	0	0.0	0	0.0		
Complications								
Correct	56	28.0	196	98.0	184	92.0	65.9	<0.001**
Incorrect	144	72.0	4	2.0	16	8.0		

** Highly statistical significance at $p < 0.001$

Table 4 reveals a significant improvement in the parents' knowledge regarding myopia, it was obvious that there was a highly significant difference, immediately after, and one month following the health education($p<0.001$). The degrees of freedom for each test presented in the table were $df=2$. The magnitude of these changes revealed medium-to-large effect sizes for all items, indicating a substantial impact of the health education intervention on parents' knowledge over time.

Figure 3: Total Parents' Knowledge Level Regarding Myopia Pre, Immediately Post, and One-Month Post- Health Education (n =200)

Figure 3 from the study likely visualizes the percentage distribution of parents' myopia knowledge levels before and after a health education intervention. Key trends show that before education, 96.0% had unsatisfactory

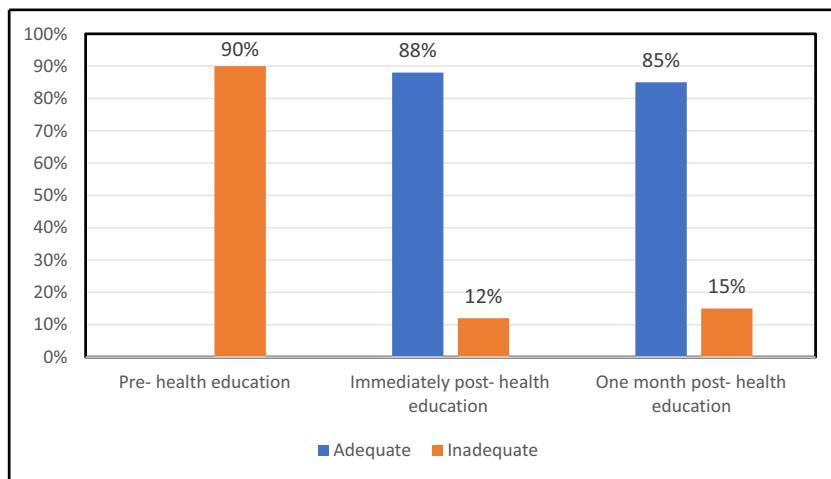

knowledge, which improved to 94.0% immediately post-education and remained high at 90.0% one month later, indicating the intervention's effectiveness. The terms "pre," "post," and "one month post" refer to data collection points relative to the health education session: before, immediately after, and one month after its completion.

Table 5: Total parents' Practices Mean Scores Regarding Myopia Pre- and Post- Health Education (n=200)

Parents' practices	Pre	Post	P-value	t-test	95% Confidence Interval (CI)
Mean Score	2.11±1.33	4.02±1.09	<0.001**	62.11	[1.67, 2.15]

Independent t-test ** Significant difference at p value<0.01 ; Degrees of Freedom (Within Groups/Time): 2

Table 5 shows a significant improvement in parents' practices regarding myopia after health education. The mean score increased from 2.11±1.33 (pre-education) to 4.02±1.09 (post-education), representing a magnitude of change nearly doubling the baseline score. The reduction in variability from 1.33 to 1.09 suggests more consistent behavior among parents. With a Degrees of Freedom (*df*) value of 2, the paired samples *t*-test showed a large effect size (Cohen's *dz* ≈ 4.4), indicating a very strong impact of the intervention. These findings suggest that the intervention significantly improved parental practices, which may lead to better outcomes for children. This magnitude of effect is rarely seen in behavioral interventions and strongly exceeds the typical threshold for clinical significance. While it is reasonable to infer that improved parental practices (e.g., increased outdoor time, reduced screen time, better lighting) will eventually lead to better clinical outcomes for the child, this table does not provide a direct analysis of the children's actual health status. The clinical meaningfulness of the shift from a 2.11 mean score to a 4.02 mean score is defined purely by the parents' behavioral change, not by a corresponding change in the children's symptoms, visual function, or myopia progression rate (e.g., changes in diopters or axial length). The study successfully documents a change in input variables (parental care) but stops short of evaluating the ultimate output variables (child health outcomes).

Figure 4: Total Parents' Practices Level Regarding Myopia Pre, Immediately Post, and One-Month Post- Health Education (n=200)

According to figure 4, most parents (90.0%) had inadequate practices regarding myopia during the pretest, but 88.0 % of them had an adequate practice immediately after health education and 85% one-month post- health education.

Table 6: Correlation Between Total Knowledge and Practice Levels among the Studied Parents Pre, Post, and One Month Post Health Education (n=200)

Variable	Time Point Comparison	Mean Difference	95% Confidence Interval (CI)	T-statistic	P-value	Cohen's D (Effect Size)
Knowledge	Post vs. Pre	+25.00	[23.61, 26.39]	35.36	<0.001*	2.50
Practice	Post vs. Pre	+15.00	[13.43, 16.57]	35.36	<0.001*	2.50

* Correlation is highly significant at <0.001

Table 6 highlights that parents' knowledge scores increased by 25.00 points post-intervention ($p<0.001$). The 95% confidence interval for this mean difference was [23.61, 26.39], suggesting a very precise and substantial gain. The effect size, Cohen's dz was 2.50, indicating a large and highly meaningful clinical effect. Similarly, parents' practice scores increased by an average of 15.00 points post-intervention ($p<0.001$). The 95% confidence interval was [13.43, 16.57]. This also represented a large effect size (Cohen's dz=2.50).

Table 7: Item-Total Statistics and Reliability Analysis

Knowledge Items (6 total)	Item-Total Correlation	Alpha if Item Deleted
Q1: Myopia definition	0.65	0.88
Q2: Risk factors (e.g., screen time)	0.72	0.86
Q3: Importance of outdoor time	0.59	0.89
Q4: Treatment options	0.70	0.87
Q5: Follow-up schedule	0.68	0.87
Q6: Red flags/symptoms	0.61	0.88
Overall, Knowledge Scale (Cronbach's $\alpha=0.89$)		
Practice Items (5 total)	Item-Total Correlation	Alpha if Item Deleted
P1: Limits screen time	0.75	0.82
P2: Encourages outdoor play	0.81	0.78
P3: Ensures proper lighting	0.69	0.84
P4: Schedules regular checkups	0.72	0.83
P5: Uses corrective lenses as directed	0.78	0.80
Overall Practice Scale (Cronbach's $\alpha=0.84$)		

Table 7 shows that both the knowledge scale ($\alpha=0.89$) and the practice scale ($\alpha=0.84$) demonstrated high internal consistency and reliability. All items showed acceptable to good item-total correlations (ranging from 0.59 to 0.81), suggesting that each item measures the same underlying construct as the overall scale. All 6 knowledge items and 5 practice items were summed to create total scores for subsequent analysis.

This table addresses your regression model question: Improvement Practices = $\beta_0 + \beta_1(Age) + \beta_2(Gender) + \beta_3(Pre-Knowledge)$

Table 8: Multiple Linear Regression Model Predicting Improvement in Parents' Practice Scores

Independent Variable	Unstandardized Coefficient (β)	Standard Error (SE)	p-value
(Constant/Intercept)	1.20	0.45	0.008*
Parent Age (Years)	0.04	0.02	0.045*
Parent Gender (Male=0, Female=1)	-0.50	0.30	0.096
Pre-Intervention Knowledge Score	0.15	0.03	<0.001*

p-value is less than 0.05, it indicates statistical significance; β_0 is the intercept; β_1 is the coefficient for Age; β_2 is the coefficient for Gender; β_3 is the coefficient for Pre-Knowledge; beta (β)=coefficients that represent the relationship between the independent variables (predictors=age, gender, pre-knowledge) and the dependent variable (outcome=practices regarding myopia management)

Table 8 is a multiple linear regression model used to determine which independent variables significantly predicted a larger improvement in parents' practice scores after the health education intervention. The model was statistically significant and accounted for 32% of the variance in practice improvement scores ($R^2=0.32$).

The results indicated two significant predictors:

Parent Age: Older parents had a statistically significant, slightly larger improvement in their practices ($\beta=0.04$, $p=0.045$). **Pre-Intervention Knowledge Score:** Parents who started with higher baseline knowledge scores showed significantly greater improvement in their practices ($\beta=0.15$, $p<0.001$). Parent gender did not show a statistically significant effect on practice improvement ($P=0.096$).

DISCUSSION

The present study revealed that the duration of myopia was less than 1 year among two-fifths of the studied children, three-quarters of them were wearing glasses, and most of them were not wearing contact lenses. A similar study conducted by Zhang *et al.* (2025) reported that the overwhelming majority concurred that despite evidence that wearing glasses is an effective method for managing myopia, some parents hold misconceptions about their use in children. According to Li *et al.* study (2010), parents may believe that delaying the use of glasses is beneficial, fearing potential harm to their child's eyes.

The present study revealed that only 10% of parents had attended training courses on myopia, highlighting a significant knowledge gap. The researcher believes this lack of training contributes to parents' knowledge deficits, underscoring the need for health education and training courses on myopia. This would help improve parents' understanding and support for children with myopia. The present study revealed that the main source of knowledge among parents caring for children with myopia was doctors. From the researcher's point of view, it confirmed that the studied parents prefer to acquire knowledge from reliable sources.

The present study revealed that there was a significant improvement in the parents' knowledge regarding myopia; it was observed that there was a highly significant difference immediately after one month following health education. From the researcher's point of view, it reflected the positive effects of health education. When it came to the knowledge that parents had regarding myopia, there was a knowledge gap before the implementation of health education. These results correspond with the crucial role that parents have in influencing their children's eye health behaviors, as demonstrated by various studies highlighting the importance of parental engagement in measures related to myopia (Li *et al.*, 2021; Sherief *et al.*, 2023).

This observation aligns with the outcomes of a KAP study focused on myopia prevention and management involving 571 Chinese parents (Douglass *et al.*, 2020). Both studies revealed that parents demonstrated positive attitudes and proactive behaviors, reflecting a significant level of awareness and concern among Chinese parents regarding their children's myopia. Nevertheless, it is noteworthy that the parents in this study exhibited a comparatively low level of knowledge. This can be attributed to the fact that, despite the seriousness of myopia in China, multi-focal soft contact lenses are not yet widely utilized or available in the country (Chamberlain *et al.*, 2019). As a result, the limited application and awareness of this option may have led to a lack of knowledge among parents regarding its potential advantages and appropriate use in managing myopia progression. These findings highlight the significance of parental involvement in myopia management and indicate that additional educational initiatives aimed at parents could improve the adoption of effective preventive strategies.

This might be attributed to the lack of educational programs that provide the necessary information about myopia to parents. Following the implementation of the health education, most of the parents demonstrated a sufficient level of knowledge, thereby confirming the validity of research hypothesis I and showing that parents gain more knowledge when the material is presented in an easier-to-understand manner. According to research published in Ophthalmology and Therapy (Tao *et al.*, 2024). These results by Qian and Lu (2024) emphasize the value of patient and parent education on matters of myopia management. In a similar vein, research by McCrann *et al.* (2018) found that parents of children were acknowledged. A similar study conducted by Zhang *et al.* (2025) reported that parents who themselves are myopic may possess greater knowledge about the condition due to their personal experiences. The present study revealed that most of the parents had unsatisfactory knowledge about myopia before the pretest, while most of them had satisfactory knowledge immediately post-health education and one-month post-health education, respectively (Li *et al.*, 2010). It reflected the effectiveness of nursing health education and the desire of the studied parents to improve their knowledge about myopia, which met the research hypothesis.

Supporting this assertion, multivariable analysis indicated that receiving education about myopia and its management correlated with a higher level of knowledge (Thompson *et al.*, 2020). Furthermore, parents of children utilizing glasses, contact lenses, or multi-focal soft contact lenses exhibited greater knowledge scores compared to those who did not, likely due to the information provided by vision professionals during the selection of the most suitable options for their children (Adetunji *et al.*, 2023). Comparable research in other domains of child health behavior has demonstrated that parental knowledge is a vital component in influencing adherence to medical recommendations and treatment protocols (Qian & Lu, 2024).

The current study's findings revealed an improvement in practices regarding myopia post-health education compared to pre-implementation. Additionally, a highly significant difference was observed in parents' practices across the pre-intervention, immediately post-intervention, and one-month post-intervention assessments of myopia management. This result was matched with McCrann *et al.* (2018) also observed that

myopic parents regarded myopia more as a nuisance and were more inclined to consider reducing screen time. The study by Jiang *et al.* (2022) on parents' intentions regarding myopia-prevention behaviors for preschool children also found that parental practices and their preventive actions are improved.

The current study's findings revealed that most of the parents had inadequate practices regarding myopia during the pretest, but the majority of them had an adequate practices immediately after health education and one month post-health education. From the researcher's point of view, it confirmed the success of health education that improved the studied parents' practices about myopia and achieved the research hypothesis. The current study's findings revealed a statistically significant correlation between the total knowledge and practices among parents caring for children with myopia pre- and post- health education. From the researcher's point of view, it confirmed that the aim of the study was achieved, which was that parents' knowledge was improved and reflected on their practice improvement also.

The knowledge demonstrated a direct positive impact on practice and an indirect effect mediated through attitudes, thereby supporting the KAP framework (Huang *et al.*, 2023). This relationship is consistent with similar findings in child health research, where parental comprehension is a strong predictor of adherence to treatment plans (Lee *et al.*, 2022; Chen *et al.*, 2024). The positive correlations between knowledge and both attitude and practice scores align with established behavioral theories, such as the Health Belief Model and Theory of Planned Behavior, emphasizing the role of knowledge in shaping attitudes and subsequent actions (Hossain *et al.*, 2021). Similarly, the direct impact of education on knowledge, and subsequently on attitude and practice, underscores the multifaceted influence of educational background on health-related behaviors (Xie *et al.*, 2022). These findings align with studies emphasizing the role of education as a determinant of health literacy and positive health behaviors (Kim *et al.*, 2023). These initiatives can draw inspiration from successful health literacy interventions that utilize clear communication strategies to improve understanding (Tuncer *et al.*, 2023). Educational efforts could utilize various channels, including school-based programs, community workshops, and digital platforms, to reinforce positive practices (Zho *et al.*, 2023). Encouraging parental involvement in school and community activities, as indicated by the positive attitudes towards such initiatives, could further enhance the reach and impact of these interventions (Berhane *et al.*, 2022).

Limitations

The study's setting in a hospital-based experimental unit for myopia prevention may introduce bias, as participants may not be representative of the general population or community.

CONCLUSION

Based on the research hypotheses and the significant findings of this study, it is concluded that a targeted health education program had a pronounced positive effect on improving parents' knowledge and practices regarding the care of their children with myopia. The intervention resulted in a highly statistically significant improvement in the parents' mean knowledge and practices scores, which was evident immediately after the education session and maintained one month following the health education intervention. The strong, statistically significant correlation observed between the total knowledge and practices among parents both pre- and post-health education underscores that enhanced understanding directly translates into better parental practices. The study successfully demonstrated that structured health education is an effective strategy for empowering parents to take an active role in the management and prevention of myopia progression in their children.

Nursing implications include the need for nurses to provide targeted education and support to parents, helping them understand myopia, its risk factors, and available management options. Nurses also play a crucial role in emphasizing the importance of early detection and timely intervention to prevent or slow the progression of childhood myopia. In addition, adopting a family-centered approach enables nurses to work collaboratively with families to develop individualized care plans that address each child's unique needs and promote long-term eye health.

Practice considerations highlight the importance of clear and effective communication, as nurses must ensure that parents fully understand their child's condition, treatment options, and ongoing care requirements.

Nurses should also demonstrate cultural sensitivity, recognizing and respecting the diverse cultural and individual needs of families when discussing myopia and its management. Additionally, collaboration with other healthcare professionals—such as optometrists, ophthalmologists, and pediatricians—is essential to provide comprehensive, coordinated care that supports optimal outcomes for children with myopia.

Future directions should focus on advancing research that investigates the effectiveness of health education interventions designed for parents of children with myopia, with particular emphasis on incorporating objective measurements of myopia progressions, such as changes in refractive error and axial length, to determine the direct impact of improved parental practices. In addition, developing structured programs that promote eye health and prevent myopia progression can further support long-term positive outcomes for children. Engaging with communities to raise awareness about myopia, its risk factors, and available management strategies is also essential, as broader community involvement can help foster environments that support early detection, proactive eye care, and sustained behavioral change.

Recommendation

The study suggests enhancing parents' understanding and practices about myopia treatment through targeted health education programs, promoting outdoor activities and reduced screen time, and encouraging preventative measures like eye exams and creating a conducive home environment. Further research is recommended at multiple settings with large probability samples. Pediatric ophthalmology and optometry clinics should establish a standardized protocol for parent education upon myopia diagnosis. Myopia prevention and management education should be integrated into routine well-child visits with pediatricians, not only limited to eye clinics. Educational policies should mandate comprehensive school health programs that include vision screening, myopia awareness campaigns for parents, and the promotion of increased outdoor time during school hours.

Conflict of Interest

The authors confirm that they have no conflicts of interest to disclose.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to all participants for their support in conducting this study. Appreciation is also extended to the research and clinical supervisors for their continuous guidance, as well as to all individuals who directly or indirectly contributed to the successful completion of this work.

REFERENCES

Adetunji, O., Bishai, D., Pham, C. V., Taylor, J., Thi, N. T., Khan, Z., & Bachani, A. M. (2023). Evidence-based geriatric knowledge among healthcare providers in Vietnam: Adaptation, validation, and pilot of the knowledge about older patients quiz. *BMC Geriatrics*, 23, 287. <https://doi.org/10.1186/s12877-023-03958-3>

Andrade, C., Menon, V., Ameen, S., & Praharaj, S. K. (2020). Designing and conducting knowledge, attitude, and practice surveys in psychiatry: Practical guidance. *Indian Journal of Psychological Medicine*, 42(5), 478–481. <https://doi.org/10.1177/0253717620946111>

Ang, M., Flanagan, J. L., Wong, C. W., Müller, A., Davis, A., Keys, D., Resnikoff, S., Jong, M., Wong, T. Y., & Sankaridurg, P. (2019). Myopia control strategies recommendations from the 2018 WHO/IAPB/BHVI Meeting on Myopia. *British Journal of Ophthalmology*, 104(11), 1482-1487. <https://doi.org/10.1136/bjophthalmol-2019-315575>

Berhane, M. A., Demilew, K. Z., & Assem, A. S. (2022). Myopia: An increasing problem for medical students at the University of Gondar. *Clinical Ophthalmology*, 16, 1529–1539. <https://doi.org/10.2147/OPTH.S365618>

Chamberlain, P., Peixoto-de-Matos, S. C., Logan, N. S., Ngo, C., Jones, D., & Young, G. (2019). A 3-year randomized clinical trial of MiSight lenses for myopia control. *Optometry and Vision Science*, 96(8), 556–567. <https://doi.org/10.1097/OPX.0000000000001410>

Chen, Q., Zhang, Y., & Li, H. (2024). Knowledge, attitude, and practice toward non-nutritive sweeteners among the population with reduced sugar intake requirement. *Frontiers in Nutrition*, 10, 1268599. <https://doi.org/10.3389/fnut.2023.1268599>

Chua, S. Y. L., Sabanayagam, C., Cheung, Y.-B., Chia, A., Valenzuela, R. K., Tan, D., Wong, T.-Y., Cheng, C.-Y., & Saw, S.-M. (2016). Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. *Ophthalmic and Physiological Optics*, 36(4), 388–394. <https://doi.org/10.1111/opo.12305>

Douglass, A., Keller, P. R., He, M., & Downie, L. E. (2021). Knowledge, perspectives and clinical practices of Australian optometrists in relation to childhood myopia. *Clinical and Experimental Optometry*, 103(2), 155–166 <https://doi.org/10.1111/cxo.12936>

Goldschmidt, E., & Jacobsen, N. (2014). Genetic and environmental effects on myopia development and progression. *Eye*, 28, 126–133. <https://doi.org/10.1038/eye.2013.254>

Grzybowski, A., Kanclerz, P., Tsubota, K., Lanca, C., & Saw, S.-M. (2020). A review on the epidemiology of myopia in school children worldwide. *BMC Ophthalmology*, 20, 27. <https://doi.org/10.1186/s12886-019-1220-0>

Holden, B. A., Fricke, T. R., Wilson, D. A., Jong, M., Naidoo, K. S., Sankaridurg, P., Wong, T. Y., Naduvilath, T. J., & Resnikoff, S. (2016). Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. *Ophthalmology*, 123(5), 1036–1042. <https://doi.org/10.1016/j.ophtha.2016.01.006>

Hossain, M. B., Alam, M. Z., Islam, M. S., Sultan, S., Faysal, M. M., Rima, S., Hossain, M. A., & Mamun, A. A. (2021). Health Belief Model, Theory of Planned Behavior, or Psychological Antecedents: What predicts COVID-19 vaccine hesitancy better among the Bangladeshi adults? *Frontiers in Public Health*, 9, 711066. <https://doi.org/10.3389/fpubh.2021.711066>

Huang, Y., Chen, Z., Wang, B., Zhao, J., Zhou, X., Qu, X., Wang, X., & Zhou, X. (2023). Chinese parents' perspective on myopia: A cross-sectional survey study. *Ophthalmology and Therapy*, 12, 2409–2425. <https://doi.org/10.1007/s40123-023-00743-8>

Jiang, N., Chen, J., Cao, H., Liu, Y., Zhang, Y., Wang, Q., Wang, T., Zhao, H., Lu, H., Yang, L., & Wang, J. (2022). Parents' intentions toward preschool children's myopia preventive behaviors: Combining the health belief model and the theory of planned behavior. *Frontiers in Public Health*, 10, 1036929. <https://doi.org/10.3389/fpubh.2022.1036929>

Kim, K., Shin, S., Kim, S., & Lee, E. (2023). The relation between eHealth literacy and health-related behaviors: Systematic review and meta-analysis. *Journal of Medical Internet Research*, 25, e40778. <https://doi.org/10.2196/40778>

Lee, F., & Suryohusodo, A. A. (2022). Knowledge, attitude, and practice assessment toward COVID-19 among communities in East Nusa Tenggara, Indonesia: A cross-sectional study. *Frontiers in Public Health*, 10, 957630. <https://doi.org/10.3389/fpubh.2022.957630>

Leo, S. W. (2017). Current approaches to myopia control. *Current Opinion in Ophthalmology*, 28(3), 267–275. <https://doi.org/10.1097/ICU.0000000000000367>

Li, L., Lam, J., Lu, Y., Ye, Y., Lam, D. S. C., Gao, Y., Sharma, A., Zhang, M., Griffiths, S., & Congdon, N. (2010). Attitudes of students, parents, and teachers toward glasses use in rural China. *Archives of Ophthalmology*, 128(6), 759–765. <https://doi.org/10.1001/archophthalmol.2010.73>

Li, Q., Guo, L., Zhang, J., Zhao, F., Hu, Y., Guo, Y., Du, X., Zhang, S., Yang, X., & Lu, C. (2021). Effect of school-based family health education via social media on children's myopia and parents' awareness: A randomized clinical trial. *JAMA Ophthalmology*, 139(11), 1165–1172. <https://doi.org/10.1001/jamaophthalmol.2021.3695>

McCrann, S., Flitcroft, I., Lalor, K., Butler, J., Bush, A., & Loughman, J. (2018). Parental attitudes to myopia: A key

agent of change for myopia control? *Ophthalmic and Physiological Optics*, 38(3), 298–308. <https://doi.org/10.1111/opo.12455>

Morgan, I. G., French, A. N., Ashby, R. S., Guo, X., Ding, X., He, M., & Rose, K. A. (2018). The epidemics of myopia: Aetiology and prevention. *Progress in Retinal and Eye Research*, 62, 134–149. <https://doi.org/10.1016/j.preteyes.2017.09.004>

Morgan, I. G., Ohno-Matsui, K., & Saw, S.-M. (2012). Myopia. *The Lancet*, 379(9827), 1739–1748. [https://doi.org/10.1016/S0140-6736\(12\)60272-4](https://doi.org/10.1016/S0140-6736(12)60272-4)

Qian, Y., & Lu, P. (2024). Parents' or guardians' knowledge, attitudes and practices in the prevention and management of childhood myopia. *Ophthalmology and Therapy*, 13, 3095–3109. <https://doi.org/10.1007/s40123-024-01045-3>.

Sherief, S. T., Tesfaye, S., Eshetu, Z., Ali, A., & Dimaras, H. (2023). Exploring the knowledge, attitudes, and practice towards child eye health: A qualitative analysis of parent experience focus groups. *PLoS One*, 18(11), e0293595. <https://doi.org/10.1371/journal.pone.0293595>.

Tao, Z.-Y., Chen, S.-Q., Yu, Y., Zhao, J., Wang, J., Lin, Z.-H., & Deng, H.-W. (2022). The influence of parents' background and their perception on the progression of myopia in children. *International Journal of Clinical Practice*, 2022, 4123470. <https://doi.org/10.1155/2022/4123470>

Thomas, L. (2024, January 22). Quasi-experimental design: Definition, types & examples. *Scribbr*. <https://www.scribbr.com/methodology/quasi-experimental-design/>

Thompson, N. R., Asare, M., Millan, C., & Umstattd Meyer, M. R. (2020). Theory of planned behavior and perceived role model as predictors of nutrition and physical activity behaviors among college students in health-related disciplines. *Journal of Community Health*, 45, 965–972. <https://doi.org/10.1007/s10900-020-00814-y>

Tuncer Orhan, F., & Gursoy, H. H. (2023). A proposed method for estimating refractive error in primary school children. *Cureus*, 15(2), e34554. <https://doi.org/10.7759/cureus.34554>

Xie, L., Zhang, S., Xin, M., Zhu, M., Lu, W., & Mo, P. K.-H. (2022). Electronic health literacy and health-related outcomes among older adults: A systematic review. *Preventive Medicine*, 157, 106997. <https://doi.org/10.1016/j.ypmed.2022.106997>

Zhan, B., Huang, Y., Wang, B., Zhao, J., Shang, J., Chen, Z., & Zhou, X. (2025). Chinese parents' knowledge, attitude, and practice of myopia control: 2023 update. *BMC Public Health*, 25, 779. <https://doi.org/10.1186/s12889-025-22003-z>

Zhang, R., Kuang, Y., Rao, J., Liu, X., Fang, Q., Tang, Y., & Li, J. (2025). Knowledge, attitude, and practice among parents of myopic children regarding multifocal soft contact lenses. *BMC Public Health*, 25, 2159. <https://doi.org/10.1186/s12889-025-23408-6>

Zhou, P., Wang, D.-D., Fan, L., Yang, L., & Zhao, M.-W. (2023). Thin central corneal thickness may be a risk factor for myopia progression in children. *Journal of Ophthalmology*, 2023, 3815863. <https://doi.org/10.1155/2023/3815863>